Новинка

11403.98 руб.

There has been growing interest in the model of semiconductor lasers with non-Markovian relaxation. Introducing senior and graduate students and research scientists to quantum mechanics concepts, which are becoming an essential tool in modern engineering, Engineering Quantum Mechanics develops a non-Markovian model for the optical gain of semiconductor, taking into account the rigorous electronic band-structure and the non-Markovian relaxation using the quantum statistical reduced-density operator formalism. Example programs based on Fortran 77 are provided for band-structures of zinc-blende and wurtzite quantum wells.
Новинка

8411.42 руб.

Alongside a thorough definition of basic concepts and their interrelations, backed by numerous examples, this textbook features a rare discussion of quantum mechanics and information theory combined in one text. It deals with important topics hardly found in regular textbooks, including the Robertson-Schrodinger relation, incompatibility between angle and angular momentum, «dispersed indeterminacy», interaction-free measurements, «submissive quantum mechanics», and many others. With its in-depth discussion of key concepts complete with problems and exercises, this book is poised to become the standard textbook for advanced undergraduate and beginning graduate quantum mechanics courses and an essential reference for physics students and physics professionals.
Новинка

10932.09 руб.

Quantum Physics for Scientists and Technologists is a self-contained, comprehensive review of this complex branch of science. The book demystifies difficult concepts and views the subject through non-physics fields such as computer science, biology, chemistry, and nanotechnology. It explains key concepts and phenomena in the language of non-physics majors and with simple math, assuming no prior knowledge of the topic. This cohesive book begins with the wavefunction to develop the basic principles of quantum mechanics such as the uncertainty principle and wave-particle duality. Comprehensive coverage of quantum theory is presented, supported by experimental results and explained through applications and examples without the use of abstract and complex mathematical tools or formalisms. From there, the book: Takes the mystery out of the Schrodinger equation, the fundamental equation of quantum physics, by applying it to atoms Shows how quantum mechanics explains the periodic table of elements Introduces the quantum mechanical concept of spin and spin quantum number, along with Pauli's Exclusion Principle regarding the occupation of quantum states Addresses quantum states of molecules in terms of rotation and vibration of diatomic molecules Explores the interface between classical statistical mechanics and quantum statistical mechanics Discusses quantum mechanics as a common thread through different fields of nanoscience and nanotechnology Each chapter features real-world applications of one or more quantum mechanics principles. «Study Checkpoints» and problems with solutions are presented throughout to make difficult concepts easy to understand. In addition, pictures, tables, and diagrams with full explanations are used to present data and further explain difficult concepts. This book is designed as a complete course in quantum mechanics for senior undergraduates and first-year graduate students in non-physics majors. It also applies to courses such as modern physics, physical chemistry and nanotechnology. The material is also accessible to scientists, engineers, and technologists working in the fields of computer science, biology, chemistry, engineering, and nanotechnology.
Новинка

6209.27 руб.

Build an intuitive understanding of the principles behind quantum mechanics through practical construction and replication of original experiments With easy-to-acquire, low-cost materials and basic knowledge of algebra and trigonometry, Exploring Quantum Physics through Hands-on Projects takes readers step by step through the process of re-creating scientific experiments that played an essential role in the creation and development of quantum mechanics. Presented in near chronological order—from discoveries of the early twentieth century to new material on entanglement—this book includes question- and experiment-filled chapters on: Light as a Wave Light as Particles Atoms and Radioactivity The Principle of Quantum Physics Wave/Particle Duality The Uncertainty Principle Schrödinger (and his Zombie Cat) Entanglement From simple measurements of Planck's constant to testing violations of Bell's inequalities using entangled photons, Exploring Quantum Physics through Hands-on Projects not only immerses readers in the process of quantum mechanics, it provides insight into the history of the field—how the theories and discoveries apply to our world not only today, but also tomorrow. By immersing readers in groundbreaking experiments that can be performed at home, school, or in the lab, this first-ever, hands-on book successfully demystifies the world of quantum physics for all who seek to explore it—from science enthusiasts and undergrad physics students to practicing physicists and engineers.
Новинка

8096.82 руб.

The main topic of this book is quantum mechanics, as the title indicates. It specifically targets those topics within quantum mechanics that are needed to understand modern semiconductor theory. It begins with the motivation for quantum mechanics and why classical physics fails when dealing with very small particles and small dimensions. Two key features make this book different from others on quantum mechanics, even those usually intended for engineers: First, after a brief introduction, much of the development is through Fourier theory, a topic that is at the heart of most electrical engineering theory. In this manner, the explanation of the quantum mechanics is rooted in the mathematics familiar to every electrical engineer. Secondly, beginning with the first chapter, simple computer programs in MATLAB are used to illustrate the principles. The programs can easily be copied and used by the reader to do the exercises at the end of the chapters or to just become more familiar with the material. Many of the figures in this book have a title across the top. This title is the name of the MATLAB program that was used to generate that figure. These programs are available to the reader. Appendix D lists all the programs, and they are also downloadable at http://booksupport.wiley.com
Новинка

621 руб.

The present book contains one hundred and sixty problems, most of them simple, in nonrelativistic quantum mechanics. Some of these problems were used previously by the authors in their courses at the Moscow Institute of Engineering and Physics. However, the majority were drawn up or selected in the course of work on the book. This book is designed for physics students who are studying quantum mechanics approximately at the level of D.I.Blokhintsev's book or Part II of "Theoretical Physics" by A.S.Kompaneyts. A number of problems is intended primarily for students who are beginning to specialize in theoretical physics and who are partially familiar with the contents of "Quantum Mechanics" by L.D.Landau and Ye.M.Lifshits. Some problems illustrate individual theoretical questions which have scarcely been considered in textbooks: sudden and adiabatic changes; Heisenberg representation of operators; probability relations in addition of momenta; isotopic spin; parity; and others. The authors have tried to use relatively elementary mathematical tools of quantum mechanics to facilitate use of the book by nontheoretical physicists. With a few exceptions, the authors have not included in this book problems which are considered in sufficient detail in the basic textbooks mentioned above and in the problem book on quantum mechanics written by V.G.Levich. Therefore, this book should be regarded chiefly as an auxiliary textbook in the study of the above books.
Новинка

10381.55 руб.

A modern approach to mathematical modeling, featuring unique applications from the field of mechanics An Introduction to Mathematical Modeling: A Course in Mechanics is designed to survey the mathematical models that form the foundations of modern science and incorporates examples that illustrate how the most successful models arise from basic principles in modern and classical mathematical physics. Written by a world authority on mathematical theory and computational mechanics, the book presents an account of continuum mechanics, electromagnetic field theory, quantum mechanics, and statistical mechanics for readers with varied backgrounds in engineering, computer science, mathematics, and physics. The author streamlines a comprehensive understanding of the topic in three clearly organized sections: Nonlinear Continuum Mechanics introduces kinematics as well as force and stress in deformable bodies; mass and momentum; balance of linear and angular momentum; conservation of energy; and constitutive equations Electromagnetic Field Theory and Quantum Mechanics contains a brief account of electromagnetic wave theory and Maxwell's equations as well as an introductory account of quantum mechanics with related topics including ab initio methods and Spin and Pauli's principles Statistical Mechanics presents an introduction to statistical mechanics of systems in thermodynamic equilibrium as well as continuum mechanics, quantum mechanics, and molecular dynamics Each part of the book concludes with exercise sets that allow readers to test their understanding of the presented material. Key theorems and fundamental equations are highlighted throughout, and an extensive bibliography outlines resources for further study. Extensively class-tested to ensure an accessible presentation, An Introduction to Mathematical Modeling is an excellent book for courses on introductory mathematical modeling and statistical mechanics at the upper-undergraduate and graduate levels. The book also serves as a valuable reference for professionals working in the areas of modeling and simulation, physics, and computational engineering.
Новинка

9788.54 руб.

A unique discussion of mathematical methods with applications to quantum mechanics Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects presents various mathematical constructions influenced by quantum mechanics and emphasizes the spectral theory of non-adjoint operators. Featuring coverage of functional analysis and algebraic methods in contemporary quantum physics, the book discusses the recent emergence of unboundedness of metric operators, which is a serious issue in the study of parity-time-symmetric quantum mechanics. The book also answers mathematical questions that are currently the subject of rigorous analysis with potentially significant physical consequences. In addition to prompting a discussion on the role of mathematical methods in the contemporary development of quantum physics, the book features: Chapter contributions written by well-known mathematical physicists who clarify numerous misunderstandings and misnomers while shedding light on new approaches in this growing area An overview of recent inventions and advances in understanding functional analytic and algebraic methods for non-selfadjoint operators as well as the use of Krein space theory and perturbation theory Rigorous support of the progress in theoretical physics of non-Hermitian systems in addition to mathematically justified applications in various domains of physics such as nuclear and particle physics and condensed matter physics An ideal reference, Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects is useful for researchers, professionals, and academics in applied mathematics and theoretical and/or applied physics who would like to expand their knowledge of classical applications of quantum tools to address problems in their research. Also a useful resource for recent and related trends, the book is appropriate as a graduate-level and/or PhD-level text for courses on quantum mechanics and mathematical models in physics.
Новинка

11403.98 руб.

Unique in that it is jointly written by an experimentalist and a theorist, this monograph presents universal quantum computation based on quantum teleportation as an elementary subroutine and multi-party entanglement as a universal resource. Optical approaches to measurement-based quantum computation are also described, including schemes for quantum error correction, with most of the experiments carried out by the authors themselves. Ranging from the theoretical background to the details of the experimental realization, the book describes results and advances in the field, backed by numerous illustrations of the authors' experimental setups. Aimed at researchers, physicists, and graduate and PhD students in physics, theoretical quantum optics, quantum mechanics, and quantum information.
Новинка

12976.94 руб.

An Introduction to Advanced Quantum Physics presents important concepts from classical mechanics, electricity and magnetism, statistical physics, and quantum physics brought together to discuss the interaction of radiation and matter, selection rules, symmetries and conservation laws, scattering, relativistic quantum mechanics, apparent paradoxes, elementary quantum field theory, electromagnetic and weak interactions, and much more. This book consists of two parts: Part 1 comprises the material suitable for a second course in quantum physics and covers: Electromagnetic Radiation and Matter Scattering Symmetries and Conservation Laws Relativistic Quantum Physics Special Topics Part 2 presents elementary quantum field theory and discusses: Second Quantization of Spin 1/2 and Spin 1 Fields Covariant Perturbation Theory and Applications Quantum Electrodynamics Each chapter concludes with problems to challenge the students’ understanding of the material. This text is intended for graduate and ambitious undergraduate students in physics, material sciences, and related disciplines.
Новинка

9988.31 руб.

An invaluable introduction to nanomaterials and their applications Offering the unique approach of applying traditional physics concepts to explain new phenomena, Introduction to Nanomaterials and Devices provides readers with a solid foundation on the subject of quantum mechanics and introduces the basic concepts of nanomaterials and the devices fabricated from them. Discussion begins with the basis for understanding the basic properties of semiconductors and gradually evolves to cover quantum structures—including single, multiple, and quantum wells—and the properties of nanomaterial systems, such as quantum wires and dots. Written by a renowned specialist in the field, this book features: An introduction to the growth of bulk semiconductors, semiconductor thin films, and semiconductor nanomaterials Information on the application of quantum mechanics to nanomaterial structures and quantum transport Extensive coverage of Maxwell-Boltzmann, Fermi-Dirac, and Bose-Einstein stastistics An in-depth look at optical, electrical, and transport properties Coverage of electronic devices and optoelectronic devices Calculations of the energy levels in periodic potentials, quantum wells, and quantum dots Introduction to Nanomaterials and Devices provides essential groundwork for understanding the behavior and growth of nanomaterials and is a valuable resource for students and practitioners in a field full of possibilities for innovation and invention.
Новинка

10572.36 руб.

This introductory textbook covers fundamental quantum mechanics from an application perspective, considering optoelectronic devices, biological sensors and molecular imagers as well as solar cells and field effect transistors. The book provides a brief review of classical and statistical mechanics and electromagnetism, and then turns to the quantum treatment of atoms, molecules, and chemical bonds. Aiming at senior undergraduate and graduate students in nanotechnology related areas like physics, materials science, and engineering, the book could be used at schools that offer interdisciplinary but focused training for future workers in the semiconductor industry and for the increasing number of related nanotechnology firms, and even practicing people could use it when they need to learn related concepts. The author is Professor Dae Mann Kim from the Korea Institute for Advanced Study who has been teaching Quantum Mechanics to engineering, material science and physics students for over 25 years in USA and Asia.
Новинка

5481.58 руб.

Quantum mechanics (QM) is latently present in the life of electrical engineers already, since the hardware of todays information technology – from electrical data processing, through interconversion of electronic and optical information, to data storage and visualization – works on QM principles. New developments in micro- and opto-electronics and the advent of quantum information processing will soon make the active understanding of QM unavoidable for engineers, too. Unfortunately, the principles of QM can only be formulated mathematically, so even introductory books on the subject are mostly rather abstract. This book, written mainly for BSc students, tries to help the reader by showing «QM in action», demonstrating its surprising effects directly in applications, like lighting technology, lasers, photo- and solar cells, flash memories and quantum bits. While the axioms and basic concepts of quantum mechanics are introduced without compromises, the math is kept at a level which is required from electrical engineers anyhow. Computational work is spared by the use of Applets which also visualize the results. Among the host of other didactic features are learning objectives, chapter summaries, self-testing questions, and problems with solutions, while two appendices summarize the knowledge in classical physics and mathematics which is needed for this book.
Новинка

Новинка

9788.54 руб.

The first book to aid in the understanding of multiconfigurational quantum chemistry, Multiconfigurational Quantum Chemistry demystifies a subject that has historically been considered difficult to learn. Accessible to any reader with a background in quantum mechanics and quantum chemistry, the book contains illustrative examples showing how these methods can be used in various areas of chemistry, such as chemical reactions in ground and excited states, transition metal and other heavy element systems. The authors detail the drawbacks and limitations of DFT and coupled-cluster based methods and offer alternative, wavefunction-based methods more suitable for smaller molecules.
Новинка

5466.04 руб.

The ins and outs of law in the nonprofit sector–made easy! Written by renowned author Bruce R. Hopkins, Nonprofit Law Made Easy is a must-read guide for executives, board members, officers, accountants, fundraisers, and others who handle legal issues that affect the way nonprofit organizations are formed and operated. Nonprofit Law Made Easy presents in-depth discussions on such hot topics as acquiring and maintaining tax-exempt status, reporting requirements, charitable giving, disclosure requirements, unrelated business activities, fundraising, corporate governance principles, and board member liability. It also includes crucial information on avoiding nonprofit law traps and navigating governance and liability issues. Packed with practical tips and hard-to-find, authoritative advice, Nonprofit Law Made Easy demystifies complex legal issues with plain-language explanations of laws and regulations for non-legal professionals.
Новинка

6264.66 руб.

This topical and timely textbook is a collection of problems for students, researchers, and practitioners interested in state-of-the-art material and device applications in quantum mechanics. Most problem are relevant either to a new device or a device concept or to current research topics which could spawn new technology. It deals with the practical aspects of the field, presenting a broad range of essential topics currently at the leading edge of technological innovation. Includes discussion on: Properties of Schroedinger Equation Operators Bound States in Nanostructures Current and Energy Flux Densities in Nanostructures Density of States Transfer and Scattering Matrix Formalisms for Modelling Diffusive Quantum Transport Perturbation Theory, Variational Approach and their Applications to Device Problems Electrons in a Magnetic or Electromagnetic Field and Associated Phenomena Time-dependent Perturbation Theory and its Applications Optical Properties of Nanostructures Problems in Quantum Mechanics: For Material Scientists, Applied Physicists and Device Engineers is an ideal companion to engineering, condensed matter physics or materials science curricula. It appeals to future and present engineers, physicists, and materials scientists, as well as professionals in these fields needing more in-depth understanding of nanotechnology and nanoscience.
Новинка

7392.92 руб.

Introduces number operators with a focus on the relationship between quantum mechanics and social science Mathematics is increasingly applied to classical problems in finance, biology, economics, and elsewhere. Quantum Dynamics for Classical Systems describes how quantum tools—the number operator in particular—can be used to create dynamical systems in which the variables are operator-valued functions and whose results explain the presented model. The book presents mathematical results and their applications to concrete systems and discusses the methods used, results obtained, and techniques developed for the proofs of the results. The central ideas of number operators are illuminated while avoiding excessive technicalities that are unnecessary for understanding and learning the various mathematical applications. The presented dynamical systems address a variety of contexts and offer clear analyses and explanations of concluded results. Additional features in Quantum Dynamics for Classical Systems include: Applications across diverse fields including stock markets and population migration as well as a unique quantum perspective on these classes of models Illustrations of the use of creation and annihilation operators for classical problems Examples of the recent increase in research and literature on the many applications of quantum tools in applied mathematics Clarification on numerous misunderstandings and misnomers while shedding light on new approaches in the field Quantum Dynamics for Classical Systems is an ideal reference for researchers, professionals, and academics in applied mathematics, economics, physics, biology, and sociology. The book is also excellent for courses in dynamical systems, quantum mechanics, and mathematical models.
Новинка

13444.9 руб.

An invaluable reference for an overall but simple approach to the complexity of quantum mechanics viewed through quantum oscillators Quantum oscillators play a fundamental role in many areas of physics; for instance, in chemical physics with molecular normal modes, in solid state physics with phonons, and in quantum theory of light with photons. Quantum Oscillators is a timely and visionary book which presents these intricate topics, broadly covering the properties of quantum oscillators which are usually dispersed in the literature at varying levels of detail and often combined with other physical topics. These properties are: time-independent behavior, reversible dynamics, thermal statistical equilibrium and irreversible evolution toward equilibrium, together with anharmonicity and anharmonic couplings. As an application of these intricate topics, special attention is devoted to infrared lineshapes of single and complex (undergoing Fermi resonance or Davydov coupling) damped H-bonded systems, providing key insights into this rapidly evolving area of chemical science. Quantum Oscillators is a long overdue update in the literature surrounding quantum oscillators, and serves as an excellent supplementary text in courses on IR spectroscopy and hydrogen bonding. It is a must-have addition to the library of any graduate or undergraduate student in chemical physics.
Новинка

159.42 руб.

Новинка

473.51 руб.

Новинка

12190.46 руб.

Advanced research reference examining the closed and open quantum systems Control of Quantum Systems: Theory and Methods provides an insight into the modern approaches to control of quantum systems evolution, with a focus on both closed and open (dissipative) quantum systems. The topic is timely covering the newest research in the field, and presents and summarizes practical methods and addresses the more theoretical aspects of control, which are of high current interest, but which are not covered at this level in other text books. The quantum control theory and methods written in the book are the results of combination of macro-control theory and microscopic quantum system features. As the development of the nanotechnology progresses, the quantum control theory and methods proposed today are expected to be useful in real quantum systems within five years. The progress of the quantum control theory and methods will promote the progress and development of quantum information, quantum computing, and quantum communication. Equips readers with the potential theories and advanced methods to solve existing problems in quantum optics/information/computing, mesoscopic systems, spin systems, superconducting devices, nano-mechanical devices, precision metrology. Ideal for researchers, academics and engineers in quantum engineering, quantum computing, quantum information, quantum communication, quantum physics, and quantum chemistry, whose research interests are quantum systems control.
Новинка

1310.15 руб.

Quantum Physics For Dummies, Revised Edition helps make quantum physics understandable and accessible. From what quantum physics can do for the world to understanding hydrogen atoms, readers will get complete coverage of the subject, along with numerous examples to help them tackle the tough equations. Compatible with classroom text books and courses, Quantum Physics For Dummies, Revised Edition lets students study at their own paces and helps them prepare for graduate or professional exams. Coverage includes: The Schrodinger Equation and its Applications The Foundations of Quantum Physics Vector Notation Spin Scattering Theory, Angular Momentum, and more Your plain-English guide to understanding and working with the micro world Quantum physics – also called quantum mechanics or quantum field theory – can be daunting for even the most dedicated student or enthusiast of science, math, or physics. This friendly, concise guide makes this challenging subject understandable and accessible, from atoms to particles to gases and beyond. Plus, it's packed with fully explained examples to help you tackle the tricky equations like a pro! Compatible with any classroom course – study at your own pace and prepare for graduate or professional exams Your journey begins here – understand what quantum physics is and what kinds of problems it can solve Know the basic math – from state vectors to quantum matrix manipulations, get the foundation you need to proceed Put quantum physics to work – make sense of Schrödinger's equation and handle particles bound in square wells and harmonic oscillators Solve problems in three dimensions – use the full operators to handle wave functions and eigenvectors to find the natural wave functions of a system Discover the latest research – learn the cutting-edge quantum physics theories that aim to explain the universe itself
Новинка

11746.25 руб.

The book provides an overview of the most advanced quantum informational geometric techniques, which can help quantum communication theorists analyze quantum channels, such as security or additivity properties. Each section addresses an area of major research of quantum information theory and quantum communication networks. The authors present the fundamental theoretical results of quantum information theory, while also presenting the details of advanced quantum ccommunication protocols with clear mathematical and information theoretical background. This book bridges the gap between quantum physics, quantum information theory, and practical engineering.
Новинка

8613.91 руб.

This modern textbook offers an introduction to Quantum Mechanics as a theory that underlies the world around us, from atoms and molecules to materials, lasers, and other applications. The main features of the book are: Emphasis on the key principles with minimal mathematical formalism Demystifying discussions of the basic features of quantum systems, using dimensional analysis and order-of-magnitude estimates to develop intuition Comprehensive overview of the key concepts of quantum chemistry and the electronic structure of solids Extensive discussion of the basic processes and applications of light-matter interactions Online supplement with advanced theory, multiple-choice quizzes, etc.
Новинка

13842.07 руб.

Quantum Optics in Phase Space provides a concise introduction to the rapidly moving field of quantum optics from the point of view of phase space. Modern in style and didactically skillful, Quantum Optics in Phase Space prepares students for their own research by presenting detailed derivations, many illustrations and a large set of workable problems at the end of each chapter. Often, the theoretical treatments are accompanied by the corresponding experiments. An exhaustive list of references provides a guide to the literature. Quantum Optics in Phase Space also serves advanced researchers as a comprehensive reference book. Starting with an extensive review of the experiments that define quantum optics and a brief summary of the foundations of quantum mechanics the author Wolfgang P. Schleich illustrates the properties of quantum states with the help of the Wigner phase space distribution function. His description of waves ala WKB connects semi-classical phase space with the Berry phase. These semi-classical techniques provide deeper insight into the timely topics of wave packet dynamics, fractional revivals and the Talbot effect. Whereas the first half of the book deals with mechanical oscillators such as ions in a trap or atoms in a standing wave the second half addresses problems where the quantization of the radiation field is of importance. Such topics extensively discussed include optical interferometry, the atom-field interaction, quantum state preparation and measurement, entanglement, decoherence, the one-atom maser and atom optics in quantized light fields. Quantum Optics in Phase Space presents the subject of quantum optics as transparently as possible. Giving wide-ranging references, it enables students to study and solve problems with modern scientific literature. The result is a remarkably concise yet comprehensive and accessible text- and reference book – an inspiring source of information and insight for students, teachers and researchers alike.
Новинка

1310.15 руб.

Hands-on practice in solving quantum physics problems Quantum Physics is the study of the behavior of matter and energy at the molecular, atomic, nuclear, and even smaller microscopic levels. Like the other titles in our For Dummies Workbook series, Quantum Physics Workbook For Dummies allows you to hone your skills at solving the difficult and often confusing equations you encounter in this subject. Explains equations in easy-to-understand terms Harmonic Oscillator Operations, Angular Momentum, Spin, Scattering Theory Using a proven practice-and-review approach, Quantum Physics Workbook For Dummies is all you need to get up to speed in problem solving!
Новинка

8062.63 руб.

Written in a self-contained manner, this textbook allows both advanced students and practicing applied physicists and engineers to learn the relevant aspects from the bottom up. All logical steps are laid out without omitting steps. The book covers electrical transport properties in carbon based materials by dealing with statistical mechanics of carbon nanotubes and graphene – presenting many fresh and sometimes provoking views. Both second quantization and superconductivity are covered and discussed thoroughly. An extensive list of references is given in the end of each chapter, while derivations and proofs of specific equations are discussed in the appendix. The experienced authors have studied the electrical transport in carbon nanotubes and graphene for several years, and have contributed relevantly to the understanding and further development of the field. The content is based on the material taught by one of the authors, Prof Fujita, for courses in quantum theory of solids and quantum statistical mechanics at the University at Buffalo, and some topics have also been taught by Prof. Suzuki in a course on advanced condensed matter physics at the Tokyo University of Science. For graduate students in physics, chemistry, electrical engineering and material sciences, with a knowledge of dynamics, quantum mechanics, electromagnetism and solid-state physics at the senior undergraduate level. Includes a large numbers of exercise-type problems.
Новинка

Новинка

Новинка

15270.86 руб.

The Reviews in Computational Chemistry series brings together leading authorities in the field to teach the newcomer and update the expert on topics centered on molecular modeling, such as computer-assisted molecular design (CAMD), quantum chemistry, molecular mechanics and dynamics, and quantitative structure-activity relationships (QSAR). This volume, like those prior to it, features chapters by experts in various fields of computational chemistry. Topics in Volume 29 include: Noncovalent Interactions in Density-Functional Theory Long-Range Inter-Particle Interactions: Insights from Molecular Quantum Electrodynamics (QED) Theory Efficient Transition-State Modeling using Molecular Mechanics Force Fields for the Everyday Chemist Machine Learning in Materials Science: Recent Progress and Emerging Applications Discovering New Materials via a priori Crystal Structure Prediction Introduction to Maximally Localized Wannier Functions Methods for a Rapid and Automated Description of Proteins: Protein Structure, Protein Similarity, and Protein Folding
Новинка

10180.82 руб.

A comprehensive advanced level examination of the transport theory of nanoscale devices Provides advanced level material of electron transport in nanoscale devices from basic principles of quantum mechanics through to advanced theory and various numerical techniques for electron transport Combines several up-to-date theoretical and numerical approaches in a unified manner, such as Wigner-Boltzmann equation, the recent progress of carrier transport research for nanoscale MOS transistors, and quantum correction approximations The authors approach the subject in a logical and systematic way, reflecting their extensive teaching and research backgrounds
Новинка

11010.74 руб.

Providing a solid theoretical background in photon-matter interaction, Nonrelativistic Quantum X-Ray Physics enables readers to understand experiments performed at XFEL-facilities and x-ray synchrotrons. As a result, after reading this book, scientists and students will be able to outline and perform calculations of some important x-ray-matter interaction processes. Key features of the contents are that the scope reaches beyond the dipole approximation when necessary and that it includes short-pulse interactions. To aid the reader in this transition, some relevant examples are discussed in detail, while non-relativistic quantum electrodynamics help readers to obtain an in-depth understanding of the formalisms and processes. The text presupposes a basic (undergraduate-level) understanding of mechanics, electrodynamics, and quantum mechanics. However, more specialized concepts in these fields are introduced and the reader is directed to appropriate references. While primarily benefiting users of x-ray light-sources, the material is equally of relevance to researchers in various disciplines, such as life sciences, biology, materials science, physics, and chemistry that plan on applying these new facilities in their respective fields.
Новинка

13763.42 руб.

This advanced text introduces to the advanced undergraduate and graduate student the mathematical foundations of the methods needed to carry out practical applications in electronic molecular quantum mechanics, a necessary preliminary step before using commercial programmes to carry out quantum chemistry calculations. Major features of the book include: Consistent use of the system of atomic units, essential for simplifying all mathematical formulae Introductory use of density matrix techniques for interpreting properties of many-body systems An introduction to valence bond methods with an explanation of the origin of the chemical bond A unified presentation of basic elements of atomic and molecular interactions The book is intended for advanced undergraduate and first-year graduate students in chemical physics, theoretical and quantum chemistry. In addition, it is relevant to students from physics and from engineering sub-disciplines such as chemical engineering and materials sciences.
Новинка

11520 руб.

Кварцевый хронограф. 12/24 часовой формат отображения времени. Индикатор числа. Корпус выполнен из нержавеющей стали с PVD покрытием. Полиуретановый ремень. Диаметр корпуса 48,5 мм.
Новинка

8800 руб.

Кварцевый хронограф. Индикация числа. Корпус выполнен из нержавеющей стали. Каучуковый ремень. Диаметр 47 мм.
Новинка

14360 руб.

Кварцевый хронограф. Калибр TMI VD53. 12/24 часовой формат отображения времени. Индикатор числа. Корпус из нержавеющей стали с розовым PVD покрытием. Силиконовый ремень. Диаметр корпуса 50 мм.
Новинка

18760 руб.

Кварцевый хронограф. 12/24 часовой формат времени. Секундомер. Индикатор числа. Люминесцентные стрелки и метки. Заводная головка с защитой. Корпус из нержавеющей стали с PVD покрытием цвета золота. Минеральное стекло. Силиконовый ремень. Диаметр 51 мм.
Новинка

7640 руб.

Кварцевые часы. 12/24 часовой формат времени. Индикатор числа и дня недели. Перламутровый циферблат и корпус украшены кристаллами Swarovski. Корпус из нержавеющей стали с PVD покрытием. Сапфировое стекло. Кожаный ремень. Диаметр 39 мм.
Новинка

18680 руб.

Кварцевый хронограф. 12/24 часовой формат отображения времени. Индикатор числа. Корпус из нержавеющей стали с PVD покрытием. Полиуретановый ремень. Диаметр корпуса 48,5 мм.
Новинка

8800 руб.

Кварцевый хронограф. 12/24 часовой формат отображения времени. Индикатор числа. Корпус выполнен из нержавеющей стали с PVD покрытием. Полиуретановый ремень. Диаметр корпуса 45 мм.
Новинка

6960 руб.

Кварцевые часы. Циферблат украшен кристаллами Swarovski. Сапфировое стекло. Корпус и браслет выполнены из нержавеющей стали с PVD покрытием. Диаметр корпуса 38 мм.
Новинка

9480 руб.

Кварцевые часы. 12/24 часовой формат времени. Индикатор числа и дня недели. Перламутровый циферблат. Корпус украшен кристаллами Swarovski. Корпус из нержавеющей стали с PVD покрытием. Сапфировое стекло. Кожаный ремень. Диаметр 42 мм.
Новинка

10493.61 руб.

This book presents the fundamental principles of mechanics to re-establish the equations of Discrete Mechanics. It introduces physics and thermodynamics associated to the physical modeling. The development and the complementarity of sciences lead to review today the old concepts that were the basis for the development of continuum mechanics. The differential geometry is used to review the conservation laws of mechanics. For instance, this formalism requires a different location of vector and scalar quantities in space. The equations of Discrete Mechanics form a system of equations where the Helmholtz-Hodge decomposition plays an important role.
Новинка

10680 руб.

Кварцевый хронограф. Калибр TMI VD53. 12/24 часовой формат отображения времени. Индикатор числа. Корпус выполнен из нержавеющей стали. Полиуретановый ремень. Диаметр корпуса 50 мм.
Новинка

19160 руб.

Кварцевый хронограф. 12/24 часовой формат отображения времени. Индикатор числа. Корпус из нержавеющей стали с PVD покрытием. Полиуретановый ремень. Диаметр корпуса 48,5 мм.
Новинка

9560 руб.

Кварцевый хронограф. Калибр TMI VD53. 12/24 часовой формат отображения времени. Индикатор числа. Корпус из нержавеющей стали с розовым PVD покрытием. Кожаный ремень. Диаметр корпуса 46 мм.
Новинка

11520 руб.

Кварцевый хронограф. 12/24 часовой формат отображения времени. Индикатор числа. Корпус выполнен из нержавеющей стали. Полиуретановый ремень. Диаметр корпуса 48,5 мм.
Новинка

22600 руб.

Кварцевый хронограф. 12/24 часовой формат отображения времени. Индикатор числа. Корпус из нержавеющей стали. Силиконовый ремень. Диаметр корпуса 51 мм.
Новинка

7640 руб.

Кварцевые часы. 12/24 часовой формат времени. Индикатор числа и дня недели. Циферблат и корпус украшены кристаллами Swarovski. Корпус из нержавеющей стали с PVD покрытием. Сапфировое стекло. Кожаный ремень. Диаметр 40 мм.
Новинка

8760 руб.

Кварцевые часы. 12/24 часовой формат времени. Индикатор числа и дня недели. Циферблат и корпус украшены кристаллами Swarovski. Корпус и браслет из нержавеющей стали с PVD покрытием. Сапфировое стекло. Диаметр 39 мм.
Новинка

11990 руб.

Когда встречаются стиль, роскошь и высокие технологии, рождается истинное произведение искусства. Quantum HL-01 – топовая модель серии Quantum. Это внутриканальные наушники класса Hi-End с эксклюзивным дизайном от Tonino Lamborghini. Quantum HL-01 оснащены высокотехнологичным двойным излучателем Dual Driver с интегрированным кроссовером, который обеспечивает беспрецедентное качество звучания. Звуковая настройка модели Quantum HL-01 идеально сбалансирована, благодаря чему наушники отлично воспроизводят музыку любых жанров – от кла...
Новинка

3928.47 руб.

Now your foundation can be fully informed about the basic legal requirements affecting private foundations and avoid the perils lurking in nonprofit tax law traps. Private Foundation Law Made Easy clearly shows you how, with information on reaping the charitable and tax advantages of your private foundation. Filled with straightforward guidance, author Bruce Hopkins?a leading authority on the laws regulating private foundations?demystifies this topic for you and your board members with practical legal information in easy-to-understand English.
Новинка

3750 руб.

вышивка, одноцветное изделие, круглый вырез горловины, длинные рукава, без карманов
Новинка

11990 руб.

Когда встречаются стиль, роскошь и высокие технологии, рождается истинное произведение искусства. Quantum HL-01 – топовая модель серии Quantum. Это внутриканальные наушники класса Hi-End с эксклюзивным дизайном от Tonino Lamborghini. Quantum HL-01 оснащены высокотехнологичным двойным излучателем Dual Driver с интегрированным кроссовером, который обеспечивает беспрецедентное качество звучания. Звуковая настройка модели Quantum HL-01 идеально сбалансирована, благодаря чему наушники отлично воспроизводят музыку любых жанров – от кла...
Новинка

9397 руб.

Ocean Wave Mechanics: Applications in Marine Structures
Новинка

499 руб.

Кружка. Quantum Physics for Scientists and Technologists is a self-contained, comprehensive review of this complex branch of science. The book demystifies difficult concepts and views the subject through non-physics fields such as computer science, biology, chemistry, and nanotechnology. It explains key concepts and phenomena in the language of non-physics majors and with simple math, assuming no prior knowledge of the topic. This cohesive book begins with the wavefunction to develop the basic principles of quantum mechanics such as the uncertainty principle and wave-particle duality. Comprehensive coverage of quantum theory is presented, supported by experimental results and explained through applications and examples without the use of abstract and complex mathematical tools or formalisms. From there, the book: Takes the mystery out of the Schrodinger equation, the fundamental equation of quantum physics, by applying it to atoms Shows how quantum mechanics explains the periodic table of elements Introduces the quantum mechanical concept of spin and spin quantum number, along with Pauli's Exclusion Principle regarding the occupation of quantum states Addresses quantum states of molecules in terms of rotation and vibration of diatomic molecules Explores the interface between classical statistical mechanics and quantum statistical mechanics Discusses quantum mechanics as a common thread through different fields of nanoscience and nanotechnology Each chapter features real-world applications of one or more quantum mechanics principles. «Study Checkpoints» and problems with solutions are presented throughout to make difficult concepts easy to understand. In addition, pictures, tables, and diagrams with full explanations are used to present data and further explain difficult concepts. This book is designed as a complete course in quantum mechanics for senior undergraduates and first-year graduate students in non-physics majors. It also applies to courses such as modern physics, physical chemistry and nanotechnology. The material is also accessible to scientists, engineers, and technologists working in the fields of computer science, biology, chemistry, engineering, and nanotechnology.