finite mathematics with applications



Wu Shen R. Introduction to the Explicit Finite Element Method for Nonlinear Transient Dynamics Wu Shen R. Introduction to the Explicit Finite Element Method for Nonlinear Transient Dynamics Новинка

Wu Shen R. Introduction to the Explicit Finite Element Method for Nonlinear Transient Dynamics

A systematic introduction to the theories and formulations of the explicit finite element method As numerical technology continues to grow and evolve with industrial applications, understanding the explicit finite element method has become increasingly important, particularly in the areas of crashworthiness, metal forming, and impact engineering. Introduction to the Explicit Finite Element Method for Nonlinear Transient Dynamics is the first book to address specifically what is now accepted as the most successful numerical tool for nonlinear transient dynamics. The book aids readers in mastering the explicit finite element method and programming code without requiring extensive background knowledge of the general finite element. The authors present topics relating to the variational principle, numerical procedure, mechanical formulation, and fundamental achievements of the convergence theory. In addition, key topics and techniques are provided in four clearly organized sections: • Fundamentals explores a framework of the explicit finite element method for nonlinear transient dynamics and highlights achievements related to the convergence theory • Element Technology discusses four-node, three-node, eight-node, and two-node element theories • Material Models outlines models of plasticity and other nonlinear materials as well as the mechanics model of ductile damage • Contact and Constraint Conditions covers subjects related to three-dimensional surface contact, with examples solved analytically, as well as discussions on kinematic constraint conditions Throughout the book, vivid figures illustrate the ideas and key features of the explicit finite element method. Examples clearly present results, featuring both theoretical assessments and industrial applications. Introduction to the Explicit Finite Element Method for Nonlinear Transient Dynamics is an ideal book for both engineers who require more theoretical discussions and for theoreticians searching for interesting and challenging research topics. The book also serves as an excellent resource for courses on applied mathematics, applied mechanics, and numerical methods at the graduate level.
Do Duong D. Applied Mathematics And Modeling For Chemical Engineers Do Duong D. Applied Mathematics And Modeling For Chemical Engineers Новинка

Do Duong D. Applied Mathematics And Modeling For Chemical Engineers

Enables chemical engineers to use mathematics to solve common on-the-job problems With its clear explanations, examples, and problem sets, Applied Mathematics and Modeling for Chemical Engineers has enabled thousands of chemical engineers to apply mathematical principles to successfully solve practical problems. The book introduces traditional techniques to solve ordinary differential equations as well as analytical methods to deal with important classes of finite-difference equations. It then explores techniques for solving partial differential equations from classical methods to finite-transforms, culminating with??numerical methods??including orthogonal collocation. This Second Edition demonstrates how classical mathematics solves a broad range of new applications that have arisen since the publication of the acclaimed first edition. Readers will find new materials and problems dealing with such topics as: Brain implant drug delivery Carbon dioxide storage Chemical reactions in nanotubes Dissolution of pills and pharmaceutical capsules Honeycomb reactors used in catalytic converters New models of physical phenomena such as bubble coalescence Like the first edition, this Second Edition provides plenty of worked examples that explain each step on the way to finding a problem's solution. Homework problems at the end of each chapter are designed to encourage readers to more deeply examine the underlying logic of the mathematical techniques used to arrive at the answers. Readers can refer to the references, also at the end of each chapter, to explore individual topics in greater depth. Finally, the text's appendices provide additional information on numerical methods for solving algebraic equations as well as a detailed explanation of numerical integration algorithms. Applied Mathematics and Modeling for Chemical Engineers is recommended for all students in chemical engineering as well as professional chemical engineers who want to improve their ability to use mathematics to solve common on-the-job problems.
Amir Khoei R. Extended Finite Element Method. Theory and Applications Amir Khoei R. Extended Finite Element Method. Theory and Applications Новинка

Amir Khoei R. Extended Finite Element Method. Theory and Applications

Introduces the theory and applications of the extended finite element method (XFEM) in the linear and nonlinear problems of continua, structures and geomechanics Explores the concept of partition of unity, various enrichment functions, and fundamentals of XFEM formulation. Covers numerous applications of XFEM including fracture mechanics, large deformation, plasticity, multiphase flow, hydraulic fracturing and contact problems Accompanied by a website hosting source code and examples
Vangelis Paschos Th. Applications of Combinatorial Optimization Vangelis Paschos Th. Applications of Combinatorial Optimization Новинка

Vangelis Paschos Th. Applications of Combinatorial Optimization

11978.15 руб. Найти похожее
Combinatorial optimization is a multidisciplinary scientific area, lying in the interface of three major scientific domains: mathematics, theoretical computer science and management. The three volumes of the Combinatorial Optimization series aims to cover a wide range of topics in this area. These topics also deal with fundamental notions and approaches as with several classical applications of combinatorial optimization. “Applications of Combinatorial Optimization” is presenting a certain number among the most common and well-known applications of Combinatorial Optimization.
Jian-Ming Jin The Finite Element Method in Electromagnetics Jian-Ming Jin The Finite Element Method in Electromagnetics Новинка

Jian-Ming Jin The Finite Element Method in Electromagnetics

11912.33 руб. Найти похожее
A new edition of the leading textbook on the finite element method, incorporating major advancements and further applications in the field of electromagnetics The finite element method (FEM) is a powerful simulation technique used to solve boundary-value problems in a variety of engineering circumstances. It has been widely used for analysis of electromagnetic fields in antennas, radar scattering, RF and microwave engineering, high-speed/high-frequency circuits, wireless communication, electromagnetic compatibility, photonics, remote sensing, biomedical engineering, and space exploration. The Finite Element Method in Electromagnetics, Third Edition explains the method’s processes and techniques in careful, meticulous prose and covers not only essential finite element method theory, but also its latest developments and applications—giving engineers a methodical way to quickly master this very powerful numerical technique for solving practical, often complicated, electromagnetic problems. Featuring over thirty percent new material, the third edition of this essential and comprehensive text now includes: A wider range of applications, including antennas, phased arrays, electric machines, high-frequency circuits, and crystal photonics The finite element analysis of wave propagation, scattering, and radiation in periodic structures The time-domain finite element method for analysis of wideband antennas and transient electromagnetic phenomena Novel domain decomposition techniques for parallel computation and efficient simulation of large-scale problems, such as phased-array antennas and photonic crystals Along with a great many examples, The Finite Element Method in Electromagnetics is an ideal book for engineering students as well as for professionals in the field.
Richard Bernatz Fourier Series and Numerical Methods for Partial Differential Equations Richard Bernatz Fourier Series and Numerical Methods for Partial Differential Equations Новинка

Richard Bernatz Fourier Series and Numerical Methods for Partial Differential Equations

The importance of partial differential equations (PDEs) in modeling phenomena in engineering as well as in the physical, natural, and social sciences is well known by students and practitioners in these fields. Striking a balance between theory and applications, Fourier Series and Numerical Methods for Partial Differential Equations presents an introduction to the analytical and numerical methods that are essential for working with partial differential equations. Combining methodologies from calculus, introductory linear algebra, and ordinary differential equations (ODEs), the book strengthens and extends readers' knowledge of the power of linear spaces and linear transformations for purposes of understanding and solving a wide range of PDEs. The book begins with an introduction to the general terminology and topics related to PDEs, including the notion of initial and boundary value problems and also various solution techniques. Subsequent chapters explore: The solution process for Sturm-Liouville boundary value ODE problems and a Fourier series representation of the solution of initial boundary value problems in PDEs The concept of completeness, which introduces readers to Hilbert spaces The application of Laplace transforms and Duhamel's theorem to solve time-dependent boundary conditions The finite element method, using finite dimensional subspaces The finite analytic method with applications of the Fourier series methodology to linear version of non-linear PDEs Throughout the book, the author incorporates his own class-tested material, ensuring an accessible and easy-to-follow presentation that helps readers connect presented objectives with relevant applications to their own work. Maple is used throughout to solve many exercises, and a related Web site features Maple worksheets for readers to use when working with the book's one- and multi-dimensional problems. Fourier Series and Numerical Methods for Partial Differential Equations is an ideal book for courses on applied mathematics and partial differential equations at the upper-undergraduate and graduate levels. It is also a reliable resource for researchers and practitioners in the fields of mathematics, science, and engineering who work with mathematical modeling of physical phenomena, including diffusion and wave aspects.
Alan Palazzolo Vibration Theory and Applications with Finite Elements and Active Vibration Control Alan Palazzolo Vibration Theory and Applications with Finite Elements and Active Vibration Control Новинка

Alan Palazzolo Vibration Theory and Applications with Finite Elements and Active Vibration Control

Based on many years of research and teaching, this book brings together all the important topics in linear vibration theory, including failure models, kinematics and modeling, unstable vibrating systems, rotordynamics, model reduction methods, and finite element methods utilizing truss, beam, membrane and solid elements. It also explores in detail active vibration control, instability and modal analysis. The book provides the modeling skills and knowledge required for modern engineering practice, plus the tools needed to identify, formulate and solve engineering problems effectively.
Stakgold Ivar Green's Functions and Boundary Value Problems Stakgold Ivar Green's Functions and Boundary Value Problems Новинка

Stakgold Ivar Green's Functions and Boundary Value Problems

10398.61 руб. Найти похожее
Praise for the Second Edition «This book is an excellent introduction to the wide field of boundary value problems.»—Journal of Engineering Mathematics «No doubt this textbook will be useful for both students and research workers.»—Mathematical Reviews A new edition of the highly-acclaimed guide to boundary value problems, now featuring modern computational methods and approximation theory Green's Functions and Boundary Value Problems, Third Edition continues the tradition of the two prior editions by providing mathematical techniques for the use of differential and integral equations to tackle important problems in applied mathematics, the physical sciences, and engineering. This new edition presents mathematical concepts and quantitative tools that are essential for effective use of modern computational methods that play a key role in the practical solution of boundary value problems. With a careful blend of theory and applications, the authors successfully bridge the gap between real analysis, functional analysis, nonlinear analysis, nonlinear partial differential equations, integral equations, approximation theory, and numerical analysis to provide a comprehensive foundation for understanding and analyzing core mathematical and computational modeling problems. Thoroughly updated and revised to reflect recent developments, the book includes an extensive new chapter on the modern tools of computational mathematics for boundary value problems. The Third Edition features numerous new topics, including: Nonlinear analysis tools for Banach spaces Finite element and related discretizations Best and near-best approximation in Banach spaces Iterative methods for discretized equations Overview of Sobolev and Besov space linear Methods for nonlinear equations Applications to nonlinear elliptic equations In addition, various topics have been substantially expanded, and new material on weak derivatives and Sobolev spaces, the Hahn-Banach theorem, reflexive Banach spaces, the Banach Schauder and Banach-Steinhaus theorems, and the Lax-Milgram theorem has been incorporated into the book. New and revised exercises found throughout allow readers to develop their own problem-solving skills, and the updated bibliographies in each chapter provide an extensive resource for new and emerging research and applications. With its careful balance of mathematics and meaningful applications, Green's Functions and Boundary Value Problems, Third Edition is an excellent book for courses on applied analysis and boundary value problems in partial differential equations at the graduate level. It is also a valuable reference for mathematicians, physicists, engineers, and scientists who use applied mathematics in their everyday work.
Kenneth Falconer Fractal Geometry. Mathematical Foundations and Applications Kenneth Falconer Fractal Geometry. Mathematical Foundations and Applications Новинка

Kenneth Falconer Fractal Geometry. Mathematical Foundations and Applications

The seminal text on fractal geometry for students and researchers: extensively revised and updated with new material, notes and references that reflect recent directions. Interest in fractal geometry continues to grow rapidly, both as a subject that is fascinating in its own right and as a concept that is central to many areas of mathematics, science and scientific research. Since its initial publication in 1990 Fractal Geometry: Mathematical Foundations and Applications has become a seminal text on the mathematics of fractals. The book introduces and develops the general theory and applications of fractals in a way that is accessible to students and researchers from a wide range of disciplines. Fractal Geometry: Mathematical Foundations and Applications is an excellent course book for undergraduate and graduate students studying fractal geometry, with suggestions for material appropriate for a first course indicated. The book also provides an invaluable foundation and reference for researchers who encounter fractals not only in mathematics but also in other areas across physics, engineering and the applied sciences. Provides a comprehensive and accessible introduction to the mathematical theory and applications of fractals Carefully explains each topic using illustrative examples and diagrams Includes the necessary mathematical background material, along with notes and references to enable the reader to pursue individual topics Features a wide range of exercises, enabling readers to consolidate their understanding Supported by a website with solutions to exercises and additional material http://www.wileyeurope.com/fractal Leads onto the more advanced sequel Techniques in Fractal Geometry (also by Kenneth Falconer and available from Wiley)
Jo Boaler Mindset Mathematics. Visualizing and Investigating Big Ideas, Grade 4 Jo Boaler Mindset Mathematics. Visualizing and Investigating Big Ideas, Grade 4 Новинка

Jo Boaler Mindset Mathematics. Visualizing and Investigating Big Ideas, Grade 4

Engage students in mathematics using growth mindset techniques The most challenging parts of teaching mathematics are engaging students and helping them understand the connections between mathematics concepts. In this volume, you'll find a collection of low floor, high ceiling tasks that will help you do just that, by looking at the big ideas at the fourth-grade level through visualization, play, and investigation. During their work with tens of thousands of teachers, authors Jo Boaler, Jen Munson, and Cathy Williams heard the same message—that they want to incorporate more brain science into their math instruction, but they need guidance in the techniques that work best to get across the concepts they needed to teach. So the authors designed Mindset Mathematics around the principle of active student engagement, with tasks that reflect the latest brain science on learning. Open, creative, and visual math tasks have been shown to improve student test scores, and more importantly change their relationship with mathematics and start believing in their own potential. The tasks in Mindset Mathematics reflect the lessons from brain science that: There is no such thing as a math person – anyone can learn mathematics to high levels. Mistakes, struggle and challenge are the most important times for brain growth. Speed is unimportant in mathematics. Mathematics is a visual and beautiful subject, and our brains want to think visually about mathematics. With engaging questions, open-ended tasks, and four-color visuals that will help kids get excited about mathematics, Mindset Mathematics is organized around nine big ideas which emphasize the connections within the Common Core State Standards (CCSS) and can be used with any current curriculum.
Cho W. S. To Stochastic Structural Dynamics. Application of Finite Element Methods Cho W. S. To Stochastic Structural Dynamics. Application of Finite Element Methods Новинка

Cho W. S. To Stochastic Structural Dynamics. Application of Finite Element Methods

One of the first books to provide in-depth and systematic application of finite element methods to the field of stochastic structural dynamics The parallel developments of the Finite Element Methods in the 1950’s and the engineering applications of stochastic processes in the 1940’s provided a combined numerical analysis tool for the studies of dynamics of structures and structural systems under random loadings. In the open literature, there are books on statistical dynamics of structures and books on structural dynamics with chapters dealing with random response analysis. However, a systematic treatment of stochastic structural dynamics applying the finite element methods seems to be lacking. Aimed at advanced and specialist levels, the author presents and illustrates analytical and direct integration methods for analyzing the statistics of the response of structures to stochastic loads. The analysis methods are based on structural models represented via the Finite Element Method. In addition to linear problems the text also addresses nonlinear problems and non-stationary random excitation with systems having large spatially stochastic property variations. A systematic treatment of stochastic structural dynamics applying the finite element methods Highly illustrated throughout and aimed at advanced and specialist levels, it focuses on computational aspects instead of theory Emphasizes results mainly in the time domain with limited contents in the time-frequency domain Presents and illustrates direction integration methods for analyzing the statistics of the response of linear and nonlinear structures to stochastic loads Under Author Information – one change of word to existing text: He is a Fellow of the American Society of Mechanical Engineers (ASME)........
Carl Boyer B. A History of Mathematics Carl Boyer B. A History of Mathematics Новинка

Carl Boyer B. A History of Mathematics

The updated new edition of the classic and comprehensive guide to the history of mathematics For more than forty years, A History of Mathematics has been the reference of choice for those looking to learn about the fascinating history of humankind’s relationship with numbers, shapes, and patterns. This revised edition features up-to-date coverage of topics such as Fermat’s Last Theorem and the Poincaré Conjecture, in addition to recent advances in areas such as finite group theory and computer-aided proofs. Distills thousands of years of mathematics into a single, approachable volume Covers mathematical discoveries, concepts, and thinkers, from Ancient Egypt to the present Includes up-to-date references and an extensive chronological table of mathematical and general historical developments. Whether you're interested in the age of Plato and Aristotle or Poincaré and Hilbert, whether you want to know more about the Pythagorean theorem or the golden mean, A History of Mathematics is an essential reference that will help you explore the incredible history of mathematics and the men and women who created it.
Robert Vallin W. The Elements of Cantor Sets. With Applications Robert Vallin W. The Elements of Cantor Sets. With Applications Новинка

Robert Vallin W. The Elements of Cantor Sets. With Applications

A systematic and integrated approach to Cantor Sets and their applications to various branches of mathematics The Elements of Cantor Sets: With Applications features a thorough introduction to Cantor Sets and applies these sets as a bridge between real analysis, probability, topology, and algebra. The author fills a gap in the current literature by providing an introductory and integrated perspective, thereby preparing readers for further study and building a deeper understanding of analysis, topology, set theory, number theory, and algebra. The Elements of Cantor Sets provides coverage of: Basic definitions and background theorems as well as comprehensive mathematical details A biography of Georg Ferdinand Ludwig Philipp Cantor, one of the most significant mathematicians of the last century Chapter coverage of fractals and self-similar sets, sums of Cantor Sets, the role of Cantor Sets in creating pathological functions, p-adic numbers, and several generalizations of Cantor Sets A wide spectrum of topics from measure theory to the Monty Hall Problem An ideal text for courses in real analysis, topology, algebra, and set theory for undergraduate and graduate-level courses within mathematics, computer science, engineering, and physics departments, The Elements of Cantor Sets is also appropriate as a useful reference for researchers and secondary mathematics education majors.
Tretyakov Sergei A. Modern Electromagnetic Scattering Theory with Applications Tretyakov Sergei A. Modern Electromagnetic Scattering Theory with Applications Новинка

Tretyakov Sergei A. Modern Electromagnetic Scattering Theory with Applications

12175.59 руб. Найти похожее
This self-contained book gives fundamental knowledge about scattering and diffraction of electromagnetic waves and fills the gap between general electromagnetic theory courses and collections of engineering formulas. The book is a tutorial for advanced students learning the mathematics and physics of electromagnetic scattering and curious to know how engineering concepts and techniques relate to the foundations of electromagnetics
Richard Henriksen N. Scale Invariance. Self-Similarity of the Physical World Richard Henriksen N. Scale Invariance. Self-Similarity of the Physical World Новинка

Richard Henriksen N. Scale Invariance. Self-Similarity of the Physical World

Bringing the concepts of dimensional analysis, self-similarity, and fractal dimensions together in a logical and self-contained manner, this book reveals the close links between modern theoretical physics and applied mathematics. The author focuses on the classic applications of self-similar solutions within astrophysical systems, with some general theory of self-similar solutions, so as to provide a framework for researchers to apply the principles across all scientific disciplines. He discusses recent advances in theoretical techniques of scaling while presenting a uniform technique that encompasses these developments, as well as applications to almost any branch of quantitative science. The result is an invaluable reference for active scientists, featuring examples of dimensions and scaling in condensed matter physics, astrophysics, fluid mechanics, and general relativity, as well as in mathematics and engineering.
He Matthew Mathematics of Bioinformatics. Theory, Methods and Applications He Matthew Mathematics of Bioinformatics. Theory, Methods and Applications Новинка

He Matthew Mathematics of Bioinformatics. Theory, Methods and Applications

Mathematics of Bioinformatics: Theory, Methods, and Applications provides a comprehensive format for connecting and integrating information derived from mathematical methods and applying it to the understanding of biological sequences, structures, and networks. Each chapter is divided into a number of sections based on the bioinformatics topics and related mathematical theory and methods. Each topic of the section is comprised of the following three parts: an introduction to the biological problems in bioinformatics; a presentation of relevant topics of mathematical theory and methods to the bioinformatics problems introduced in the first part; an integrative overview that draws the connections and interfaces between bioinformatics problems/issues and mathematical theory/methods/applications.
Fabio Bagarello Quantum Dynamics for Classical Systems. With Applications of the Number Operator Fabio Bagarello Quantum Dynamics for Classical Systems. With Applications of the Number Operator Новинка

Fabio Bagarello Quantum Dynamics for Classical Systems. With Applications of the Number Operator

Introduces number operators with a focus on the relationship between quantum mechanics and social science Mathematics is increasingly applied to classical problems in finance, biology, economics, and elsewhere. Quantum Dynamics for Classical Systems describes how quantum tools—the number operator in particular—can be used to create dynamical systems in which the variables are operator-valued functions and whose results explain the presented model. The book presents mathematical results and their applications to concrete systems and discusses the methods used, results obtained, and techniques developed for the proofs of the results. The central ideas of number operators are illuminated while avoiding excessive technicalities that are unnecessary for understanding and learning the various mathematical applications. The presented dynamical systems address a variety of contexts and offer clear analyses and explanations of concluded results. Additional features in Quantum Dynamics for Classical Systems include: Applications across diverse fields including stock markets and population migration as well as a unique quantum perspective on these classes of models Illustrations of the use of creation and annihilation operators for classical problems Examples of the recent increase in research and literature on the many applications of quantum tools in applied mathematics Clarification on numerous misunderstandings and misnomers while shedding light on new approaches in the field Quantum Dynamics for Classical Systems is an ideal reference for researchers, professionals, and academics in applied mathematics, economics, physics, biology, and sociology. The book is also excellent for courses in dynamical systems, quantum mechanics, and mathematical models.
Hashiguchi Koichi Introduction to Finite Strain Theory for Continuum Elasto-Plasticity Hashiguchi Koichi Introduction to Finite Strain Theory for Continuum Elasto-Plasticity Новинка

Hashiguchi Koichi Introduction to Finite Strain Theory for Continuum Elasto-Plasticity

10530.24 руб. Найти похожее
Comprehensive introduction to finite elastoplasticity, addressing various analytical and numerical analyses & including state-of-the-art theories Introduction to Finite Elastoplasticity presents introductory explanations that can be readily understood by readers with only a basic knowledge of elastoplasticity, showing physical backgrounds of concepts in detail and derivation processes of almost all equations. The authors address various analytical and numerical finite strain analyses, including new theories developed in recent years, and explain fundamentals including the push-forward and pull-back operations and the Lie derivatives of tensors. As a foundation to finite strain theory, the authors begin by addressing the advanced mathematical and physical properties of continuum mechanics. They progress to explain a finite elastoplastic constitutive model, discuss numerical issues on stress computation, implement the numerical algorithms for stress computation into large-deformation finite element analysis and illustrate several numerical examples of boundary-value problems. Programs for the stress computation of finite elastoplastic models explained in this book are included in an appendix, and the code can be downloaded from an accompanying website.
Robert Navin L. The Mathematics of Derivatives. Tools for Designing Numerical Algorithms Robert Navin L. The Mathematics of Derivatives. Tools for Designing Numerical Algorithms Новинка

Robert Navin L. The Mathematics of Derivatives. Tools for Designing Numerical Algorithms

Praise for The Mathematics of Derivatives «The Mathematics of Derivatives provides a concise pedagogical discussion of both fundamental and very recent developments in mathematical finance, and is particularly well suited for readers with a science or engineering background. It is written from the point of view of a physicist focused on providing an understanding of the methodology and the assumptions behind derivative pricing. Navin has a unique and elegant viewpoint, and will help mathematically sophisticated readers rapidly get up to speed in the latest Wall Street financial innovations.» —David Montano, Managing Director JPMorgan Securities A stylish and practical introduction to the key concepts in financial mathematics, this book tackles key fundamentals in the subject in an intuitive and refreshing manner whilst also providing detailed analytical and numerical schema for solving interesting derivatives pricing problems. If Richard Feynman wrote an introduction to financial mathematics, it might look similar. The problem and solution sets are first rate." —Barry Ryan, Partner Bhramavira Capital Partners, London «This is a great book for anyone beginning (or contemplating), a career in financial research or analytic programming. Navin dissects a huge, complex topic into a series of discrete, concise, accessible lectures that combine the required mathematical theory with relevant applications to real-world markets. I wish this book was around when I started in finance. It would have saved me a lot of time and aggravation.» —Larry Magargal
Bent Natvig Multistate Systems Reliability Theory with Applications Bent Natvig Multistate Systems Reliability Theory with Applications Новинка

Bent Natvig Multistate Systems Reliability Theory with Applications

Most books in reliability theory are dealing with a description of component and system states as binary: functioning or failed. However, many systems are composed of multi-state components with different performance levels and several failure modes. There is a great need in a series of applications to have a more refined description of these states, for instance, the amount of power generated by an electrical power generation system or the amount of gas that can be delivered through an offshore gas pipeline network. This book provides a descriptive account of various types of multistate system, bound-for multistate systems, probabilistic modeling of monitoring and maintenance of multistate systems with components along with examples of applications. Key Features: Looks at modern multistate reliability theory with applications covering a refined description of components and system states. Presents new research, such as Bayesian assessment of system availabilities and measures of component importance. Complements the methodological description with two substantial case studies. Reliability engineers and students involved in the field of reliability, applied mathematics and probability theory will benefit from this book.
Ramm Alexander G. Dynamical Systems Method and Applications. Theoretical Developments and Numerical Examples Ramm Alexander G. Dynamical Systems Method and Applications. Theoretical Developments and Numerical Examples Новинка

Ramm Alexander G. Dynamical Systems Method and Applications. Theoretical Developments and Numerical Examples

10266.98 руб. Найти похожее
Demonstrates the application of DSM to solve a broad range of operator equations The dynamical systems method (DSM) is a powerful computational method for solving operator equations. With this book as their guide, readers will master the application of DSM to solve a variety of linear and nonlinear problems as well as ill-posed and well-posed problems. The authors offer a clear, step-by-step, systematic development of DSM that enables readers to grasp the method's underlying logic and its numerous applications. Dynamical Systems Method and Applications begins with a general introduction and then sets forth the scope of DSM in Part One. Part Two introduces the discrepancy principle, and Part Three offers examples of numerical applications of DSM to solve a broad range of problems in science and engineering. Additional featured topics include: General nonlinear operator equations Operators satisfying a spectral assumption Newton-type methods without inversion of the derivative Numerical problems arising in applications Stable numerical differentiation Stable solution to ill-conditioned linear algebraic systems Throughout the chapters, the authors employ the use of figures and tables to help readers grasp and apply new concepts. Numerical examples offer original theoretical results based on the solution of practical problems involving ill-conditioned linear algebraic systems, and stable differentiation of noisy data. Written by internationally recognized authorities on the topic, Dynamical Systems Method and Applications is an excellent book for courses on numerical analysis, dynamical systems, operator theory, and applied mathematics at the graduate level. The book also serves as a valuable resource for professionals in the fields of mathematics, physics, and engineering.
Balan Vladimir Jet Single-Time Lagrange Geometry and Its Applications Balan Vladimir Jet Single-Time Lagrange Geometry and Its Applications Новинка

Balan Vladimir Jet Single-Time Lagrange Geometry and Its Applications

Develops the theory of jet single-time Lagrange geometry and presents modern-day applications Jet Single-Time Lagrange Geometry and Its Applications guides readers through the advantages of jet single-time Lagrange geometry for geometrical modeling. With comprehensive chapters that outline topics ranging in complexity from basic to advanced, the book explores current and emerging applications across a broad range of fields, including mathematics, theoretical and atmospheric physics, economics, and theoretical biology. The authors begin by presenting basic theoretical concepts that serve as the foundation for understanding how and why the discussed theory works. Subusequent chapters compare the geometrical and physical aspects of jet relativistic time-dependent Lagrange geometry to the classical time-dependent Lagrange geometry. A collection of jet geometrical objects are also examined such as d-tensors, relativistic time-dependent semisprays, harmonic curves, and nonlinear connections. Numerous applications, including the gravitational theory developed by both the Berwald-Moór metric and the Chernov metric, are also presented. Throughout the book, the authors offer numerous examples that illustrate how the theory is put into practice, and they also present numerous applications in which the solutions of first-order ordinary differential equation systems are regarded as harmonic curves on 1-jet spaces. In addition, numerous opportunities are provided for readers to gain skill in applying jet single-time Lagrange geometry to solve a wide range of problems. Extensively classroom-tested to ensure an accessible presentation, Jet Single-Time Lagrange Geometry and Its Applications is an excellent book for courses on differential geometry, relativity theory, and mathematical models at the graduate level. The book also serves as an excellent reference for researchers, professionals, and academics in physics, biology, mathematics, and economics who would like to learn more about model-providing geometric structures.
Daniel Duffy J. Financial Instrument Pricing Using C++ Daniel Duffy J. Financial Instrument Pricing Using C++ Новинка

Daniel Duffy J. Financial Instrument Pricing Using C++

One of the best languages for the development of financial engineering and instrument pricing applications is C++. This book has several features that allow developers to write robust, flexible and extensible software systems. The book is an ANSI/ISO standard, fully object-oriented and interfaces with many third-party applications. It has support for templates and generic programming, massive reusability using templates (?write once?) and support for legacy C applications. In this book, author Daniel J. Duffy brings C++ to the next level by applying it to the design and implementation of classes, libraries and applications for option and derivative pricing models. He employs modern software engineering techniques to produce industrial-strength applications: Using the Standard Template Library (STL) in finance Creating your own template classes and functions Reusable data structures for vectors, matrices and tensors Classes for numerical analysis (numerical linear algebra ?) Solving the Black Scholes equations, exact and approximate solutions Implementing the Finite Difference Method in C++ Integration with the ?Gang of Four? Design Patterns Interfacing with Excel (output and Add-Ins) Financial engineering and XML Cash flow and yield curves Included with the book is a CD containing the source code in the Datasim Financial Toolkit. You can use this to get up to speed with your C++ applications by reusing existing classes and libraries. 'Unique… Let's all give a warm welcome to modern pricing tools.' – Paul Wilmott, mathematician, author and fund manager
Gary Muschla Robert Hands-On Math Projects With Real-Life Applications. Grades 6-12 Gary Muschla Robert Hands-On Math Projects With Real-Life Applications. Grades 6-12 Новинка

Gary Muschla Robert Hands-On Math Projects With Real-Life Applications. Grades 6-12

Hands-On Math Projects with Real-Life Applications, Second Edition offers an exciting collection of 60 hands-on projects to help students in grades 6–12 apply math concepts and skills to solving everyday, real-life problems! The book is filled with classroom-tested projects that emphasize: cooperative learning, group sharing, verbalizing concepts and ideas, efficient researching, and writing clearly in mathematics and across other subject areas. Each project achieves the goal of helping to build skills in problem solving, critical thinking, and decision making, and supports an environment in which positive group dynamics flourish. Each of the projects follows the same proven format and includes instructions for the teacher, a Student Guide, and one or more reproducible datasheets and worksheets. They all include the elements needed for a successful individual or group learning experience. The projects are easily implemented and can stand alone, and they can be used with students of various grade levels and abilities. This thoroughly revised edition of the bestseller includes some new projects, as well as fresh information about technology-based and e-learning strategies and enhancements; No Child Left Behind standards; innovative teaching suggestions with activities, exercises, and standards-based objectives; reading and literacy connections; and guidelines and objectives for group and team-building projects. Hands-On Math Projects with Real-Life Applications is printed in a lay-flat format, for easy photocopying and to help you quickly find appropriate projects to meet the diverse needs of your students, and it includes a special Skills Index that identifies the skills emphasized in each project. This book will save you time and help you instill in your students a genuine appreciation for the world of mathematics. «The projects in this book will enable teachers to broaden their instructional program and provide their students with activities that require the application of math skills to solve real-life problems. This book will help students to realize the relevance and scope of mathematics in their lives.» –Melissa Taylor, middle school mathematics teacher, Point Pleasant Borough, New Jersey
Mathematics for Cambridge International AS & A Level: Oxford Mechanics 1 for Cambridge International AS & A Level (International a Level Maths) Mathematics for Cambridge International AS & A Level: Oxford Mechanics 1 for Cambridge International AS & A Level (International a Level Maths) Новинка

Mathematics for Cambridge International AS & A Level: Oxford Mechanics 1 for Cambridge International AS & A Level (International a Level Maths)

Supporting achievement in the latest syllabus, this stretching course builds the advanced skills students will need for Cambridge assessment and for higher education. Engaging, real world applications are included throughout, making mathematics relevant to real life. The series is edited by David Rayner, whose clear, practice-based approach is trusted around the world to build students' mathematical and analytical skills. Endorsed by Cambridge for the latest syllabus. A Worked Solutions Manual is also available, covering Pure Mathematics, Mechanics, and Statistics, to comprehensively support understanding.
Г. Е. Бесстремянная Measuring income equity in the demand for healthcare with finite mixture models Г. Е. Бесстремянная Measuring income equity in the demand for healthcare with finite mixture models Новинка

Г. Е. Бесстремянная Measuring income equity in the demand for healthcare with finite mixture models

The paper exploits panel data finite mixture (latent class) models to measure consumer equity in healthcare access and utilization. The finite mixture approach accounts for unobservable consumer heterogeneity, while generalized linear models address a retransformation problem of logged dependent variable. Using the data of the Japan Household Panel Survey (2009–2014), we discover that consumers separate into latent classes in the binary choice models for healthcare use and generalized linear models for outpatient/inpatient healthcare expenditure. The results reveal that healthcare access in Japan is pro-poor for the most sick consumers, while utilization of outpatient care is equitable with respect to disposable income.
Francis Moon C. Chaotic and Fractal Dynamics. Introduction for Applied Scientists and Engineers Francis Moon C. Chaotic and Fractal Dynamics. Introduction for Applied Scientists and Engineers Новинка

Francis Moon C. Chaotic and Fractal Dynamics. Introduction for Applied Scientists and Engineers

A revision of a professional text on the phenomena of chaotic vibrations in fluids and solids. Major changes reflect the latest developments in this fast-moving topic, the introduction of problems to every chapter, additional mathematics and applications, more coverage of fractals, numerous computer and physical experiments. Contains eight pages of 4-color pictures.
Lynn Batten Margaret Public Key Cryptography. Applications and Attacks Lynn Batten Margaret Public Key Cryptography. Applications and Attacks Новинка

Lynn Batten Margaret Public Key Cryptography. Applications and Attacks

Complete coverage of the current major public key cryptosystems their underlying mathematics and the most common techniques used in attacking them Public Key Cryptography: Applications and Attacks introduces and explains the fundamentals of public key cryptography and explores its application in all major public key cryptosystems in current use, including ElGamal, RSA, Elliptic Curve, and digital signature schemes. It provides the underlying mathematics needed to build and study these schemes as needed, and examines attacks on said schemes via the mathematical problems on which they are based – such as the discrete logarithm problem and the difficulty of factoring integers. The book contains approximately ten examples with detailed solutions, while each chapter includes forty to fifty problems with full solutions for odd-numbered problems provided in the Appendix. Public Key Cryptography: • Explains fundamentals of public key cryptography • Offers numerous examples and exercises • Provides excellent study tools for those preparing to take the Certified Information Systems Security Professional (CISSP) exam • Provides solutions to the end-of-chapter problems Public Key Cryptography provides a solid background for anyone who is employed by or seeking employment with a government organization, cloud service provider, or any large enterprise that uses public key systems to secure data.
Donald Reay S. Digital Signal Processing and Applications with the OMAP - L138 eXperimenter Donald Reay S. Digital Signal Processing and Applications with the OMAP - L138 eXperimenter Новинка

Donald Reay S. Digital Signal Processing and Applications with the OMAP - L138 eXperimenter

Teaches digital signal processing concepts via hands-on examples The OMAP-L138 eXperimenter is the latest inexpensive DSP development system to be adopted by the Texas Instruments University Program. The OMAP-L138 processor contains both ARM and DSP cores and is aimed at portable and mobile multimedia applications. This book concentrates on the demonstration of real-time DSP algorithms implemented on its C6748 DSP core. Digital Signal Processing and Applications with the OMAP-L138 eXperimenter provides an extensive and comprehensive set of program examples to aid instructors in teaching DSP in a laboratory using audio frequency signals—making it an ideal text for DSP courses at senior undergraduate and postgraduate levels. Subjects covered include polling-based, interrupt-based, and DMA-based I/O methods, and how real-time programs may be run using the board support library (BSL), the DSP/BIOS real-time operating system, or the DSP/BIOS Platform Support Package. Chapters include: Analog input and output with the OMAP-L138 eXperimenter Finite impulse response filters Infinite impulse response filters Fast Fourier transform Adaptive filters DSP/BIOS and platform support package Each chapter begins with a review of background theory and then presents a number of real-time program examples to reinforce understanding of that theory and to demonstrate the use of the OMAP-L138 eXperimenter and Texas Instruments Code Composer Studio integrated development environment.
deAlmeida J.P. Moitinho Equilibrium Finite Element Formulations deAlmeida J.P. Moitinho Equilibrium Finite Element Formulations Новинка

deAlmeida J.P. Moitinho Equilibrium Finite Element Formulations

A comprehensive treatment of the theory and practice of equilibrium finite element analysis in the context of solid and structural mechanics Equilibrium Finite Element Formulations is an up to date exposition on hybrid equilibrium finite elements, which are based on the direct approximation of the stress fields. The focus is on their derivation and on the advantages that strong forms of equilibrium can have, either when used independently or together with the more conventional displacement based elements. These elements solve two important problems of concern to computational structural mechanics: a rational basis for error estimation, which leads to bounds on quantities of interest that are vital for verification of the output and provision of outputs immediately useful to the engineer for structural design and assessment. Key features: Unique in its coverage of equilibrium – an essential reference work for those seeking solutions that are strongly equilibrated. The approach is not widely known, and should be of benefit to structural design and assessment. Thorough explanations of the formulations for: 2D and 3D continua, thick and thin bending of plates and potential problems; covering mainly linear aspects of behaviour, but also with some excursions into non-linearity. Highly relevant to the verification of numerical solutions, the basis for obtaining bounds of the errors is explained in detail. Simple illustrative examples are given, together with their physical interpretations. The most relevant issues regarding the computational implementation of this approach are presented. When strong equilibrium and finite elements are to be combined, the book is a must-have reference for postgraduate students, researchers in software development or numerical analysis, and industrial practitioners who want to keep up to date with progress in simulation tools.
John Brauer R. Magnetic Actuators and Sensors John Brauer R. Magnetic Actuators and Sensors Новинка

John Brauer R. Magnetic Actuators and Sensors

A fully updated, easy-to-read guide on magnetic actuators and sensors The Second Edition of this must-have book for today's engineers includes the latest updates and advances in the field of magnetic actuators and sensors. Magnetic Actuators and Sensors emphasizes computer-aided design techniques—especially magnetic finite element analysis; offers many new sections on topics ranging from magnetic separators to spin valve sensors; and features numerous worked calculations, illustrations, and real-life applications. To aid readers in building solid, fundamental, theoretical background and design know-how, the book provides in-depth coverage in four parts: PART I: MAGNETICS Introduction Basic Electromagnetics Reluctance Method Finite-Element Method Magnetic Force Other Magnetic Performance Parameters PART II: ACTUATORS Magnetic Actuators Operated by Direct Current Magnetic Actuators Operated by Alternating Current Magnetic Actuator Transient Operation PART III: SENSORS Hall Effect and Magnetoresistive Sensors Other Magnetic Sensors PART IV: SYSTEMS Coil Design and Temperature Calculations Electromagnetic Compatibility Electromechanical Finite Elements Electromechanical Analysis Using Systems Models Coupled Electrohydraulic Analysis Using Systems Models With access to a support website containing downloadable software data files (including MATLAB® data files) for verifying design techniques and analytical methods, Magnetic Actuators and Sensors, Second Edition is an exemplary learning tool for practicing engineers and engineering students involved in the design and application of magnetic actuators and sensors.
Andrew M. Chisholm Derivatives Demystified. A Step-by-Step Guide to Forwards, Futures, Swaps and Options Andrew M. Chisholm Derivatives Demystified. A Step-by-Step Guide to Forwards, Futures, Swaps and Options Новинка

Andrew M. Chisholm Derivatives Demystified. A Step-by-Step Guide to Forwards, Futures, Swaps and Options

The book is a step-by-step guide to derivative products. By distilling the complex mathematics and theory that underlie the subject, Chisholm explains derivative products in straightforward terms, focusing on applications and intuitive explanations wherever possible. Case studies and examples of how the products are used to solve real-world problems, as well as an extensive glossary and material on the latest derivative products make this book a must have for anyone working with derivative products.
Larry Glasgow A. Applied Mathematics for Science and Engineering Larry Glasgow A. Applied Mathematics for Science and Engineering Новинка

Larry Glasgow A. Applied Mathematics for Science and Engineering

Prepare students for success in using applied mathematics for engineering practice and post-graduate studies • moves from one mathematical method to the next sustaining reader interest and easing the application of the techniques • Uses different examples from chemical, civil, mechanical and various other engineering fields • Based on a decade’s worth of the authors lecture notes detailing the topic of applied mathematics for scientists and engineers • Concisely writing with numerous examples provided including historical perspectives as well as a solutions manual for academic adopters
Eisley Joe G. Analysis of Structures. An Introduction Including Numerical Methods Eisley Joe G. Analysis of Structures. An Introduction Including Numerical Methods Новинка

Eisley Joe G. Analysis of Structures. An Introduction Including Numerical Methods

Analysis of Structures offers an original way of introducing engineering students to the subject of stress and deformation analysis of solid objects, and helps them become more familiar with how numerical methods such as the finite element method are used in industry. Eisley and Waas secure for the reader a thorough understanding of the basic numerical skills and insight into interpreting the results these methods can generate. Throughout the text, they include analytical development alongside the computational equivalent, providing the student with the understanding that is necessary to interpret and use the solutions that are obtained using software based on the finite element method. They then extend these methods to the analysis of solid and structural components that are used in modern aerospace, mechanical and civil engineering applications. Analysis of Structures is accompanied by a book companion website www.wiley.com/go/waas housing exercises and examples that use modern software which generates color contour plots of deformation and internal stress.It offers invaluable guidance and understanding to senior level and graduate students studying courses in stress and deformation analysis as part of aerospace, mechanical and civil engineering degrees as well as to practicing engineers who want to re-train or re-engineer their set of analysis tools for contemporary stress and deformation analysis of solids and structures. Provides a fresh, practical perspective to the teaching of structural analysis using numerical methods for obtaining answers to real engineering applications Proposes a new way of introducing students to the subject of stress and deformation analysis of solid objects that are used in a wide variety of contemporary engineering applications Casts axial, torsional and bending deformations of thin walled objects in a framework that is closely amenable to the methods by which modern stress analysis software operates.
Joseph Liouville 1809-1882: Master of Pure and Applied Mathematics Joseph Liouville 1809-1882: Master of Pure and Applied Mathematics Новинка

Joseph Liouville 1809-1882: Master of Pure and Applied Mathematics

This scientific biography of the mathematician Joseph Liouville is divided into two parts. The first part is a chronological account of Liouville's career including a description of the institutions he worked in, his relations with his teachers, colleagues and students, and the historical context of his works. It portrays the French scientific community in a period when Germany and England had surpassed France as the leading nations in mathematics and physics. The second part of the book gives a detailed analysis of Liouville's major contributions to mathematics and mechanics. The gradual development of Liouville's ideas, as reflected in his publications and notebooks, are related to the works of his predecessors and his contemporaries as well as to later developments in the field. On the basis of Liouville's unpublished notes the book reconstructs Liouville's hitherto unknown theories of stability of rotating masses of fluid, potential theory, Galois theory and electrodynamics. It also incorporates valuable added information from Liouville's notes regarding his works on differentiation of arbitrary order, integration in finite terms, Sturm-Liouville theory, transcendental numbers, doubly periodic functions, geometry and mechanics.
Ramoni Marco Knowledge-Based Bioinformatics. From analysis to interpretation Ramoni Marco Knowledge-Based Bioinformatics. From analysis to interpretation Новинка

Ramoni Marco Knowledge-Based Bioinformatics. From analysis to interpretation

There is an increasing need throughout the biomedical sciences for a greater understanding of knowledge-based systems and their application to genomic and proteomic research. This book discusses knowledge-based and statistical approaches, along with applications in bioinformatics and systems biology. The text emphasizes the integration of different methods for analysing and interpreting biomedical data. This, in turn, can lead to breakthrough biomolecular discoveries, with applications in personalized medicine. Key Features: Explores the fundamentals and applications of knowledge-based and statistical approaches in bioinformatics and systems biology. Helps readers to interpret genomic, proteomic, and metabolomic data in understanding complex biological molecules and their interactions. Provides useful guidance on dealing with large datasets in knowledge bases, a common issue in bioinformatics. Written by leading international experts in this field. Students, researchers, and industry professionals with a background in biomedical sciences, mathematics, statistics, or computer science will benefit from this book. It will also be useful for readers worldwide who want to master the application of bioinformatics to real-world situations and understand biological problems that motivate algorithms.
Richard Mansfield Mastering VBA for Microsoft Office 2013 Richard Mansfield Mastering VBA for Microsoft Office 2013 Новинка

Richard Mansfield Mastering VBA for Microsoft Office 2013

A unique, comprehensive guide to creating custom apps with VBA Automating computing tasks to increase productivity is a goal for businesses of all sizes. Visual Basic for Applications (VBA) is a version of Visual Basic designed to be easily understandable for novice programmers, but still powerful enough for IT professionals who need to create specialized business applications. With this invaluable book, you'll learn how to extend the capabilities of Office 2013 applications with VBA programming and use it for writing macros, automating Office applications, and creating custom applications in Word, Excel, PowerPoint, Outlook, and Access. Covers the basics of VBA in clear, systematic tutorials and includes intermediate and advanced content for experienced VB developers Explores recording macros and getting started with VBA; learning how to work with VBA; using loops and functions; using message boxes, input boxes, and dialog boxes; creating effective code; XML-based files, ActiveX, the developer tab, content controls, add-ins, embedded macros, and security Anchors the content with solid, real-world projects in Word, Excel, Outlook, PowerPoint, and Access Covering VBA for the entire suite of Office 2013 applications, Mastering VBA for Microsoft Office 2013 is mandatory reading.
Yao Jiannian One-Dimensional Nanostructures. Principles and Applications Yao Jiannian One-Dimensional Nanostructures. Principles and Applications Новинка

Yao Jiannian One-Dimensional Nanostructures. Principles and Applications

10859.31 руб. Найти похожее
Reviews the latest research breakthroughs and applications Since the discovery of carbon nanotubes in 1991, one-dimensional nanostructures have been at the forefront of nanotechnology research, promising to provide the building blocks for a new generation of nanoscale electronic and optoelectronic devices. With contributions from 68 leading international experts, this book reviews both the underlying principles as well as the latest discoveries and applications in the field, presenting the state of the technology. Readers will find expert coverage of all major classes of one-dimensional nanostructures, including carbon nanotubes, semiconductor nanowires, organic molecule nanostructures, polymer nanofibers, peptide nanostructures, and supramolecular nanostructures. Moreover, the book offers unique insights into the future of one-dimensional nanostructures, with expert forecasts of new research breakthroughs and applications. One-Dimensional Nanostructures collects and analyzes a wealth of key research findings and applications, with detailed coverage of: Synthesis Properties Energy applications Photonics and optoelectronics applications Sensing, plasmonics, electronics, and biosciences applications Practical case studies demonstrate how the latest applications work. Tables throughout the book summarize key information, and diagrams enable readers to grasp complex concepts and designs. References at the end of each chapter serve as a gateway to the literature in the field. With its clear explanations of the underlying principles of one-dimensional nanostructures, this book is ideal for students, researchers, and academics in chemistry, physics, materials science, and engineering. Moreover, One-Dimensional Nanostructures will help readers advance their own investigations in order to develop the next generation of applications.
Macmillan Mathematics 4: Teacher's Book Macmillan Mathematics 4: Teacher's Book Новинка

Macmillan Mathematics 4: Teacher's Book

Macmillan Mathematics is a six-level Primary Mathematics course designed to meet the needs of international learners. The course bridges the gap between mainstream curriculum teaching and CLIL (Content and Language Integrated Learning) or English-medium teaching. It aims to introduce mathematics in a simple and interesting way, with clearly structured lessons and colourful and appealing artwork. Multi-leveled tasks help children apply what they've learnt to the real world. Macmillan Mathematics caters for mixed ability classes and is designed to stimulate different types of mathematical thinking. "Try This" boxes offer new challenges for fast finishers and provide more practice for other learners. Assess and review sections, in addition to the core teaching units, encourage further practice and consolidation of skills, and give teachers an effective way of evaluating their pupils' progress. Embark on a journey through the world of numbers, shapes and equations in Macmillan Mathematics, the Primary Mathematics course that counts.
Craig Adam Essential Mathematics and Statistics for Forensic Science Craig Adam Essential Mathematics and Statistics for Forensic Science Новинка

Craig Adam Essential Mathematics and Statistics for Forensic Science

10856.02 руб. Найти похожее
This text is an accessible, student-friendly introduction to the wide range of mathematical and statistical tools needed by the forensic scientist in the analysis, interpretation and presentation of experimental measurements. From a basis of high school mathematics, the book develops essential quantitative analysis techniques within the context of a broad range of forensic applications. This clearly structured text focuses on developing core mathematical skills together with an understanding of the calculations associated with the analysis of experimental work, including an emphasis on the use of graphs and the evaluation of uncertainties. Through a broad study of probability and statistics, the reader is led ultimately to the use of Bayesian approaches to the evaluation of evidence within the court. In every section, forensic applications such as ballistics trajectories, post-mortem cooling, aspects of forensic pharmacokinetics, the matching of glass evidence, the formation of bloodstains and the interpretation of DNA profiles are discussed and examples of calculations are worked through. In every chapter there are numerous self-assessment problems to aid student learning. Its broad scope and forensically focused coverage make this book an essential text for students embarking on any degree course in forensic science or forensic analysis, as well as an invaluable reference for post-graduate students and forensic professionals. Key features: Offers a unique mix of mathematics and statistics topics, specifically tailored to a forensic science undergraduate degree. All topics illustrated with examples from the forensic science discipline. Written in an accessible, student-friendly way to engage interest and enhance learning and confidence. Assumes only a basic high-school level prior mathematical knowledge.
Szabó Barna Introduction to Finite Element Analysis. Formulation, Verification and Validation Szabó Barna Introduction to Finite Element Analysis. Formulation, Verification and Validation Новинка

Szabó Barna Introduction to Finite Element Analysis. Formulation, Verification and Validation

When using numerical simulation to make a decision, how can its reliability be determined? What are the common pitfalls and mistakes when assessing the trustworthiness of computed information, and how can they be avoided? Whenever numerical simulation is employed in connection with engineering decision-making, there is an implied expectation of reliability: one cannot base decisions on computed information without believing that information is reliable enough to support those decisions. Using mathematical models to show the reliability of computer-generated information is an essential part of any modelling effort. Giving users of finite element analysis (FEA) software an introduction to verification and validation procedures, this book thoroughly covers the fundamentals of assuring reliability in numerical simulation. The renowned authors systematically guide readers through the basic theory and algorithmic structure of the finite element method, using helpful examples and exercises throughout. Delivers the tools needed to have a working knowledge of the finite element method Illustrates the concepts and procedures of verification and validation Explains the process of conceptualization supported by virtual experimentation Describes the convergence characteristics of the h-, p- and hp-methods Covers the hierarchic view of mathematical models and finite element spaces Uses examples and exercises which illustrate the techniques and procedures of quality assurance Ideal for mechanical and structural engineering students, practicing engineers and applied mathematicians Includes parameter-controlled examples of solved problems in a companion website (www.wiley.com/go/szabo)
Noble Wilford John Bayesian Networks. An Introduction Noble Wilford John Bayesian Networks. An Introduction Новинка

Noble Wilford John Bayesian Networks. An Introduction

Bayesian Networks: An Introduction provides a self-contained introduction to the theory and applications of Bayesian networks, a topic of interest and importance for statisticians, computer scientists and those involved in modelling complex data sets. The material has been extensively tested in classroom teaching and assumes a basic knowledge of probability, statistics and mathematics. All notions are carefully explained and feature exercises throughout. Features include: An introduction to Dirichlet Distribution, Exponential Families and their applications. A detailed description of learning algorithms and Conditional Gaussian Distributions using Junction Tree methods. A discussion of Pearl's intervention calculus, with an introduction to the notion of see and do conditioning. All concepts are clearly defined and illustrated with examples and exercises. Solutions are provided online. This book will prove a valuable resource for postgraduate students of statistics, computer engineering, mathematics, data mining, artificial intelligence, and biology. Researchers and users of comparable modelling or statistical techniques such as neural networks will also find this book of interest.
David Cox A. Galois Theory David Cox A. Galois Theory Новинка

David Cox A. Galois Theory

Praise for the First Edition «. . .will certainly fascinate anyone interested in abstract algebra: a remarkable book!» —Monatshefte fur Mathematik Galois theory is one of the most established topics in mathematics, with historical roots that led to the development of many central concepts in modern algebra, including groups and fields. Covering classic applications of the theory, such as solvability by radicals, geometric constructions, and finite fields, Galois Theory, Second Edition delves into novel topics like Abel’s theory of Abelian equations, casus irreducibili, and the Galois theory of origami. In addition, this book features detailed treatments of several topics not covered in standard texts on Galois theory, including: The contributions of Lagrange, Galois, and Kronecker How to compute Galois groups Galois's results about irreducible polynomials of prime or prime-squared degree Abel's theorem about geometric constructions on the lemniscates Galois groups of quartic polynomials in all characteristics Throughout the book, intriguing Mathematical Notes and Historical Notes sections clarify the discussed ideas and the historical context; numerous exercises and examples use Maple and Mathematica to showcase the computations related to Galois theory; and extensive references have been added to provide readers with additional resources for further study. Galois Theory, Second Edition is an excellent book for courses on abstract algebra at the upper-undergraduate and graduate levels. The book also serves as an interesting reference for anyone with a general interest in Galois theory and its contributions to the field of mathematics.
Wilson Chin C. Electromagnetic Well Logging. Models for MWD / LWD Interpretation and Tool Design Wilson Chin C. Electromagnetic Well Logging. Models for MWD / LWD Interpretation and Tool Design Новинка

Wilson Chin C. Electromagnetic Well Logging. Models for MWD / LWD Interpretation and Tool Design

13225.32 руб. Найти похожее
Almost all publications on borehole electromagnetics deal with idealizations that are not acceptable physically, and unfortunately, even these models are company proprietary. On the other hand, “exact models” are only available through detailed finite element or finite difference analysis, and more often than not, simply describe case studies for special applications. In either case, the models are not available for general use and the value of the publications is questionable. This new approach provides a rigorous, fully three-dimensional solution to the general problem, developed over almost two decades by a researcher familiar with practical applications and mathematical modeling. Completely validated against exact solutions and physics-based checks through over a hundred documented examples, the self-contained model (with special built-in matrix solvers and iteration algorithms) with a “plain English graphical user interface” has been optimized to run extremely fast – seconds per run as opposed to minutes and hours – and then automatically presents all electric and magnetic field results through integrated three-dimensional color graphics. In addition to state-of-the-art algorithms, basic “utility programs” are also developed, such as simple dipole methods, Biot-Savart large diameter models, nonlinear phase and amplitude interpolation algorithms, and so on. Incredibly useful to oilfield practitioners, this volume is a must-have for serious professionals in the field, and all the algorithms have undergone a laborious validation process with real use in the field.
Ethirajan Rathakrishnan Theoretical Aerodynamics Ethirajan Rathakrishnan Theoretical Aerodynamics Новинка

Ethirajan Rathakrishnan Theoretical Aerodynamics

Theoretical Aerodynamics is a user-friendly text for a full course on theoretical aerodynamics. The author systematically introduces aerofoil theory, its design features and performance aspects, beginning with the basics required, and then gradually proceeding to higher level. The mathematics involved is presented so that it can be followed comfortably, even by those who are not strong in mathematics. The examples are designed to fix the theory studied in an effective manner. Throughout the book, the physics behind the processes are clearly explained. Each chapter begins with an introduction and ends with a summary and exercises. This book is intended for graduate and advanced undergraduate students of Aerospace Engineering, as well as researchers and Designers working in the area of aerofoil and blade design. Provides a complete overview of the technical terms, vortex theory, lifting line theory, and numerical methods Presented in an easy-to-read style making full use of figures and illustrations to enhance understanding, and moves well simpler to more advanced topics Includes a complete section on fluid mechanics and thermodynamics, essential background topics to the theory of aerodynamics Blends the mathematical and physical concepts of design and performance aspects of lifting surfaces, and introduces the reader to the thin aerofoil theory, panel method, and finite aerofoil theory Includes a Solutions Manual for end-of-chapter exercises, and Lecture slides on the book's Companion Website
Kiefer Wolfgang Surface Enhanced Raman Spectroscopy. Analytical, Biophysical and Life Science Applications Kiefer Wolfgang Surface Enhanced Raman Spectroscopy. Analytical, Biophysical and Life Science Applications Новинка

Kiefer Wolfgang Surface Enhanced Raman Spectroscopy. Analytical, Biophysical and Life Science Applications

12570.47 руб. Найти похожее
Covering everything from the basic theoretical and practical knowledge to new exciting developments in the field with a focus on analytical and life science applications, this monograph shows how to apply surface-enhanced Raman scattering (SERS) for solving real world problems. From the contents: * Theory and practice of SERS * Analytical applications * SERS combined with other analytical techniques * Biophysical applications * Life science applications including various microscopies Aimed at analytical, surface and medicinal chemists, spectroscopists, biophysicists and materials scientists. Includes a Foreword by the renowned Raman spectroscopist Professor Wolfgang Kiefer, the former Editor-in-Chief of the Journal of Raman Spectroscopy.
А. В. Ермакова Метод дополнительных конечных элементов для расчета железобетонных конструкций по предельным состояниям А. В. Ермакова Метод дополнительных конечных элементов для расчета железобетонных конструкций по предельным состояниям Новинка

А. В. Ермакова Метод дополнительных конечных элементов для расчета железобетонных конструкций по предельным состояниям

The work presents the theoretical basis of Additional Finite Element Method (AFEM), which is a variant of the Finite Element Method (FEM) for analysis of reinforced concrete structures at limit state. AFEM adds to the traditional sequence of problem by FEM the units of the two well-known methods of the structural design: method of additional loads and limit state method. The problem is solved by introduction of ideal failure models and additional design diagrams formed from additional finite elements, where each AFE describes the limit state reached by the main element. The main relations defining the properties of AFEs as well as the examples of the use of Additional Finite Element Method for analysis of reinforced concrete structures at limit state are given in the work too.
William Schiesser E. Differential Equation Analysis in Biomedical Science and Engineering. Ordinary Differential Equation Applications with R William Schiesser E. Differential Equation Analysis in Biomedical Science and Engineering. Ordinary Differential Equation Applications with R Новинка

William Schiesser E. Differential Equation Analysis in Biomedical Science and Engineering. Ordinary Differential Equation Applications with R

Features a solid foundation of mathematical and computational tools to formulate and solve real-world ODE problems across various fields With a step-by-step approach to solving ordinary differential equations (ODEs), Differential Equation Analysis in Biomedical Science and Engineering: Ordinary Differential Equation Applications with R successfully applies computational techniques for solving real-world ODE problems that are found in a variety of fields, including chemistry, physics, biology, and physiology. The book provides readers with the necessary knowledge to reproduce and extend the computed numerical solutions and is a valuable resource for dealing with a broad class of linear and nonlinear ordinary differential equations. The author’s primary focus is on models expressed as systems of ODEs, which generally result by neglecting spatial effects so that the ODE dependent variables are uniform in space. Therefore, time is the independent variable in most applications of ODE systems. As such, the book emphasizes details of the numerical algorithms and how the solutions were computed. Featuring computer-based mathematical models for solving real-world problems in the biological and biomedical sciences and engineering, the book also includes: R routines to facilitate the immediate use of computation for solving differential equation problems without having to first learn the basic concepts of numerical analysis and programming for ODEs Models as systems of ODEs with explanations of the associated chemistry, physics, biology, and physiology as well as the algebraic equations used to calculate intermediate variables Numerical solutions of the presented model equations with a discussion of the important features of the solutions Aspects of general ODE computation through various biomolecular science and engineering applications Differential Equation Analysis in Biomedical Science and Engineering: Ordinary Differential Equation Applications with R is an excellent reference for researchers, scientists, clinicians, medical researchers, engineers, statisticians, epidemiologists, and pharmacokineticists who are interested in both clinical applications and interpretation of experimental data with mathematical models in order to efficiently solve the associated differential equations. The book is also useful as a textbook for graduate-level courses in mathematics, biomedical science and engineering, biology, biophysics, biochemistry, medicine, and engineering.
Broughton S. Allen Discrete Fourier Analysis and Wavelets. Applications to Signal and Image Processing Broughton S. Allen Discrete Fourier Analysis and Wavelets. Applications to Signal and Image Processing Новинка

Broughton S. Allen Discrete Fourier Analysis and Wavelets. Applications to Signal and Image Processing

A thorough guide to the classical and contemporary mathematical methods of modern signal and image processing Discrete Fourier Analysis and Wavelets presents a thorough introduction to the mathematical foundations of signal and image processing. Key concepts and applications are addressed in a thought-provoking manner and are implemented using vector, matrix, and linear algebra methods. With a balanced focus on mathematical theory and computational techniques, this self-contained book equips readers with the essential knowledge needed to transition smoothly from mathematical models to practical digital data applications. The book first establishes a complete vector space and matrix framework for analyzing signals and images. Classical methods such as the discrete Fourier transform, the discrete cosine transform, and their application to JPEG compression are outlined followed by coverage of the Fourier series and the general theory of inner product spaces and orthogonal bases. The book then addresses convolution, filtering, and windowing techniques for signals and images. Finally, modern approaches are introduced, including wavelets and the theory of filter banks as a means of understanding the multiscale localized analysis underlying the JPEG 2000 compression standard. Throughout the book, examples using image compression demonstrate how mathematical theory translates into application. Additional applications such as progressive transmission of images, image denoising, spectrographic analysis, and edge detection are discussed. Each chapter provides a series of exercises as well as a MATLAB project that allows readers to apply mathematical concepts to solving real problems. Additional MATLAB routines are available via the book's related Web site. With its insightful treatment of the underlying mathematics in image compression and signal processing, Discrete Fourier Analysis and Wavelets is an ideal book for mathematics, engineering, and computer science courses at the upper-undergraduate and beginning graduate levels. It is also a valuable resource for mathematicians, engineers, and other practitioners who would like to learn more about the relevance of mathematics in digital data processing.
Xin-She Yang Engineering Optimization. An Introduction with Metaheuristic Applications Xin-She Yang Engineering Optimization. An Introduction with Metaheuristic Applications Новинка

Xin-She Yang Engineering Optimization. An Introduction with Metaheuristic Applications

An accessible introduction to metaheuristics and optimization, featuring powerful and modern algorithms for application across engineering and the sciences From engineering and computer science to economics and management science, optimization is a core component for problem solving. Highlighting the latest developments that have evolved in recent years, Engineering Optimization: An Introduction with Metaheuristic Applications outlines popular metaheuristic algorithms and equips readers with the skills needed to apply these techniques to their own optimization problems. With insightful examples from various fields of study, the author highlights key concepts and techniques for the successful application of commonly-used metaheuristc algorithms, including simulated annealing, particle swarm optimization, harmony search, and genetic algorithms. The author introduces all major metaheuristic algorithms and their applications in optimization through a presentation that is organized into three succinct parts: Foundations of Optimization and Algorithms provides a brief introduction to the underlying nature of optimization and the common approaches to optimization problems, random number generation, the Monte Carlo method, and the Markov chain Monte Carlo method Metaheuristic Algorithms presents common metaheuristic algorithms in detail, including genetic algorithms, simulated annealing, ant algorithms, bee algorithms, particle swarm optimization, firefly algorithms, and harmony search Applications outlines a wide range of applications that use metaheuristic algorithms to solve challenging optimization problems with detailed implementation while also introducing various modifications used for multi-objective optimization Throughout the book, the author presents worked-out examples and real-world applications that illustrate the modern relevance of the topic. A detailed appendix features important and popular algorithms using MATLAB® and Octave software packages, and a related FTP site houses MATLAB code and programs for easy implementation of the discussed techniques. In addition, references to the current literature enable readers to investigate individual algorithms and methods in greater detail. Engineering Optimization: An Introduction with Metaheuristic Applications is an excellent book for courses on optimization and computer simulation at the upper-undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners working in the fields of mathematics, engineering, computer science, operations research, and management science who use metaheuristic algorithms to solve problems in their everyday work.
Chun-Hui Huang Rare Earth Coordination Chemistry. Fundamentals and Applications Chun-Hui Huang Rare Earth Coordination Chemistry. Fundamentals and Applications Новинка

Chun-Hui Huang Rare Earth Coordination Chemistry. Fundamentals and Applications

16519.31 руб. Найти похожее
Edited by a highly regarded scientist and with contributions from sixteen international research groups, spanning Asia and North America, Rare Earth Coordination Chemistry: Fundamentals and Applications provides the first one-stop reference resource for important accomplishments in the area of rare earth. Consisting of two parts, Fundamentals and Applications, readers are armed with the systematic basic aspects of rare earth coordination chemistry and presented with the latest developments in the applications of rare earths. The systematic introduction of basic knowledge, application technology and the latest developments in the field, makes this ideal for readers across both introductory and specialist levels.
Erin Muschla Teaching the Common Core Math Standards with Hands-On Activities, Grades 6-8 Erin Muschla Teaching the Common Core Math Standards with Hands-On Activities, Grades 6-8 Новинка

Erin Muschla Teaching the Common Core Math Standards with Hands-On Activities, Grades 6-8

Helpful advice for teaching Common Core Math Standards to middle-school students The new Common Core State Standards for Mathematics have been formulated to provide students with instruction that will help them acquire a thorough knowledge of math at their grade level, which will in turn enable them to move on to higher mathematics with competence and confidence. Hands-on Activities for Teaching the Common Core Math Standards is designed to help teachers instruct their students so that they will better understand and apply the skills outlined in the Standards. This important resource also gives teachers a wealth of tools and activities that can encourage students to think critically, use mathematical reasoning, and employ various problem-solving strategies. Filled with activities that will help students gain an understanding of math concepts and skills correlated to the Common Core State Math Standards Offers guidance for helping students apply their understanding of math concepts and skills, develop proficiency in calculations, and learn to think abstractly Describes ways to get students to collaborate with other students, utilize technology, communicate ideas about math both orally and in writing, and gain an appreciation of the significance of mathematics to real life This practical and easy-to-use resource will help teachers give students the foundation they need for success in higher mathematics.
Macmillan Mathematics 3: Teacher's Book Macmillan Mathematics 3: Teacher's Book Новинка

Macmillan Mathematics 3: Teacher's Book

Macmillan Mathematics is a six-level Primary Mathematics course designed to meet the needs of international learners. The Teacher's Guide includes facsimiles of the Pupil's Book pages, answers to all the exercises, and supportive lesson notes to ensure that teachers get the most out of the course and their pupils.
Mathematics for Economics Mathematics for Economics Новинка

Mathematics for Economics

This book shows how mathematics is used in developing economic theory and in applied economic analysis. The text gradually develops the mathematical skills needed by students and allows them to progress at their own pace. A wide variety of examples shows how, and why, the application of mathematics has become essential to economists.
Macmillan Mathematics 1: Teacher's Book Macmillan Mathematics 1: Teacher's Book Новинка

Macmillan Mathematics 1: Teacher's Book

Macmillan Mathematics is a six-level Primary Mathematics course designed to meet the needs of international learners. The Teacher's Guide includes facsimiles of the Pupil's Book pages, answers to all the exercises, and supportive lesson notes to ensure that teachers get the most out of the course and their pupils.
Quan Li Intelligent Stimuli-Responsive Materials. From Well-Defined Nanostructures to Applications Quan Li Intelligent Stimuli-Responsive Materials. From Well-Defined Nanostructures to Applications Новинка

Quan Li Intelligent Stimuli-Responsive Materials. From Well-Defined Nanostructures to Applications

12307.22 руб. Найти похожее
There has been concerted effort across scientific disciplines to develop artificial materials and systems that can help researchers understand natural stimuli-responsive activities. With its up-to-date coverage on intelligent stimuli-responsive materials, Intelligent Stimuli-Responsive Materials provides research, industry, and academia professionals with the fundamentals and principles of intelligent stimuli-responsive materials, with a focus on methods and applications. Emphasizing nanostructures and applications for a broad range of fields, each chapter comprehensively covers a different stimuli-responsive material and discusses its developments, advances, challenges, analytical techniques, and applications.
Christoffer Andersson GPRS and 3G Wireless Applications. Professional Developer's Guide Christoffer Andersson GPRS and 3G Wireless Applications. Professional Developer's Guide Новинка

Christoffer Andersson GPRS and 3G Wireless Applications. Professional Developer's Guide

To ensure competitive advantage for their companies in wireless product development, developers need to understand how wireless technologies work, what impact they have on applications being developed, and how to use them to optimize products for success in the marketplace. Designed to answer these and other wireless development questions, this unique handbook explores how a host of relevant technologies work together with the new worldwide standards for wireless technologies–General Packet Radio Service (GPRS) and Third Generation (3G). Leading expert Christoffer Andersson clearly explains how GPRS and 3G control the mobile environment, then goes on to describe how the emerging radio technology of Bluetooth fits in with WAP and Java, how wireless applications work with HTTP and TCP/IP on the Internet, and how to create «always-on» wireless applications.
Challa S. S. R. Kumar Microfluidic Devices in Nanotechnology. Applications Challa S. S. R. Kumar Microfluidic Devices in Nanotechnology. Applications Новинка

Challa S. S. R. Kumar Microfluidic Devices in Nanotechnology. Applications

11188.38 руб. Найти похожее
Explores the latest applications arising from the intersection of nanotechnology and microfluidics In the past two decades, microfluidics research has seen phenomenal growth, with many new and emerging applications in fields ranging from chemistry, physics, and biology to engineering. With the emergence of nanotechnology, microfluidics is currently undergoing dramatic changes, embracing the rising field of nanofluidics. This volume reviews the latest devices and applications stemming from the merging of nanotechnology with microfludics in such areas as drug discovery, bio-sensing, catalysis, electrophoresis, enzymatic reactions, and nanomaterial synthesis. Each of the ten chapters is written by a leading pioneer at the intersection of nanotechnology and microfluidics. Readers not only learn about new applications, but also discover which futuristic devices and applications are likely to be developed. Topics explored in this volume include: New lab-on-a-chip systems for drug delivery Integration of microfluidics with nanoneuroscience to study the nervous system at the single-cell level Recent applications of nanoparticles within microfluidic channels for electrochemical and optical affinity biosensing Novel microfluidic approaches for the synthesis of nanomaterials Next-generation alternative energy portable power devices References in each chapter guide readers to the primary literature for further investigation of individual topics. Overall, scientists, researchers, engineers, and students will not only gain a new perspective on what has been done, but also the nanotechnology tools they need to develop the next generation of microfluidic devices and applications. Microfluidic Devices for Nanotechnology is a two-volume publication, the first ever to explore the synergies between microfluidics and nanotechnology. The first volume covers fundamental concepts; this second volume examines applications.
Soheil Mohammadi XFEM Fracture Analysis of Composites Soheil Mohammadi XFEM Fracture Analysis of Composites Новинка

Soheil Mohammadi XFEM Fracture Analysis of Composites

11583.26 руб. Найти похожее
This book describes the basics and developments of the new XFEM approach to fracture analysis of composite structures and materials. It provides state of the art techniques and algorithms for fracture analysis of structures including numeric examples at the end of each chapter as well as an accompanying website which will include MATLAB resources, executables, data files, and simulation procedures of XFEM. The first reference text for the extended finite element method (XFEM) for fracture analysis of structures and materials Includes theory and applications, with worked numerical problems and solutions, and MATLAB examples on an accompanying website with further XFEM resources Provides a comprehensive overview of this new area of research, including a review of Fracture Mechanics, basic through to advanced XFEM theory, as well as current problems and applications Includes a chapter on the future developments in the field, new research areas and possible future applications of the method
Hanan Luss Equitable Resource Allocation. Models, Algorithms and Applications Hanan Luss Equitable Resource Allocation. Models, Algorithms and Applications Новинка

Hanan Luss Equitable Resource Allocation. Models, Algorithms and Applications

A unique book that specifically addresses equitable resource allocation problems with applications in communication networks, manufacturing, emergency services, and more Resource allocation problems focus on assigning limited resources in an economically beneficial way among competing activities. Solutions to such problems affect people and everyday activities with significant impact on the private and public sectors and on society at large. Using diverse application areas as examples, Equitable Resource Allocation: Models, Algorithms, and Applications provides readers with great insight into a topic that is not widely known in the field. Starting with an overview of the topics covered, the book presents a large variety of resource allocation models with special mathematical structures and provides elegant, efficient algorithms that compute optimal solutions to these models. Authored by one of the leading researchers in the field, Equitable Resource Allocation: Is the only book that provides a comprehensive exposition of equitable resource allocation problems Presents a collection of resource allocation models with applications in communication networks, transportation, content distribution, manufacturing, emergency services, and more Exhibits practical algorithms for solving a variety of resource allocation models Uses real-world applications and examples to explain important concepts Includes end-of-chapter exercises Bringing together much of the equitable resource allocation research from the past thirty years, this book is a valuable reference for anyone interested in solving diverse optimization problems.

кешбака
Страницы:


Praise for the Second Edition «This book is an excellent introduction to the wide field of boundary value problems.»—Journal of Engineering Mathematics «No doubt this textbook will be useful for both students and research workers.»—Mathematical Reviews A new edition of the highly-acclaimed guide to boundary value problems, now featuring modern computational methods and approximation theory Green's Functions and Boundary Value Problems, Third Edition continues the tradition of the two prior editions by providing mathematical techniques for the use of differential and integral equations to tackle important problems in applied mathematics, the physical sciences, and engineering. This new edition presents mathematical concepts and quantitative tools that are essential for effective use of modern computational methods that play a key role in the practical solution of boundary value problems. With a careful blend of theory and applications, the authors successfully bridge the gap between real analysis, functional analysis, nonlinear analysis, nonlinear partial differential equations, integral equations, approximation theory, and numerical analysis to provide a comprehensive foundation for understanding and analyzing core mathematical and computational modeling problems. Thoroughly updated and revised to reflect recent developments, the book includes an extensive new chapter on the modern tools of computational mathematics for boundary value problems. The Third Edition features numerous new topics, including: Nonlinear analysis tools for Banach spaces Finite element and related discretizations Best and near-best approximation in Banach spaces Iterative methods for discretized equations Overview of Sobolev and Besov space linear Methods for nonlinear equations Applications to nonlinear elliptic equations In addition, various topics have been substantially expanded, and new material on weak derivatives and Sobolev spaces, the Hahn-Banach theorem, reflexive Banach spaces, the Banach Schauder and Banach-Steinhaus theorems, and the Lax-Milgram theorem has been incorporated into the book. New and revised exercises found throughout allow readers to develop their own problem-solving skills, and the updated bibliographies in each chapter provide an extensive resource for new and emerging research and applications. With its careful balance of mathematics and meaningful applications, Green's Functions and Boundary Value Problems, Third Edition is an excellent book for courses on applied analysis and boundary value problems in partial differential equations at the graduate level. It is also a valuable reference for mathematicians, physicists, engineers, and scientists who use applied mathematics in their everyday work.
Продажа finite mathematics with applications лучших цены всего мира
Посредством этого сайта магазина - каталога товаров мы очень легко осуществляем продажу finite mathematics with applications у одного из интернет-магазинов проверенных фирм. Определитесь с вашими предпочтениями один интернет-магазин, с лучшей ценой продукта. Прочитав рекомендации по продаже finite mathematics with applications легко охарактеризовать производителя как превосходную и доступную фирму.